2023年数据泄露成本报告是从2022年3月至2023年3月期间对全球553个组织所经历的真实数据泄露进行的深入分析,报告由Ponemon Institute进行,这是连续第18年发布。
报告中的主要发现包括:检测和升级成本在过去三年中增长了42%,在数据泄露成本中占比最高,而且出现了转向更复杂数据泄露调查的趋势。
报告称,企业在计划如何应对日益增加的成本和频率的数据泄露问题上存在着分歧。研究发现,尽管95%受访组织经历过不止一次的数据泄露,但这些组织更有可能将事件成本转嫁给消费者(57%),而不是增加安全投资(51%)。
2023年人工智能自然受到关注,该报告也涵盖了人工智能在数据泄露管理自动化中发挥的重要作用。有趣的是,人工智能有利于安全,因为与不使用人工智能的公司相比,广泛部署人工智能的组织的数据泄露生命周期要短得多——平均短108天。使用人工智能还平均节省了近180万美元的数据泄露成本,成为报告中最具实质性的成本节省措施。
尽管这些人工智能相关的数据令人鼓舞,但仍然存在一些问题。很多组织在勒索软件攻击期间仍然犹豫是否让执法部门介入。虽然一些公司因担心声誉受损而不愿将数据泄露事件公之于众或许可以理解,但对不涉及执法的组织来说,数据泄露生命周期平均延长了33天,并额外产生了470000美元的数据泄露成本。
报告还指出,检测泄露对组织来说是一个重大挑战,只有三分之一的数据泄露事件是由组织自己的安全团队或工具检测到的。与内部发现相比,攻击者暴露的漏洞所造成的成本增加了近100万美元,生命周期延长了近80天。
IBM全球安全服务部总经理Chris McCurdy表示:“对于防御者和攻击者来说,时间就是网络安全的一种新型货币。正如报告所示,早期检测和快速响应可以显着减少数据泄露所带来的影响。安全团队必须关注对手最成功的地方,并集中精力在他们实现目标之前阻止他们。在威胁检测和响应方法方面进行投资,以提高防御者的速度和效率——例如人工智能和自动化——对于改变这种平衡来说是至关重要的。”
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。