2023年数据泄露成本报告是从2022年3月至2023年3月期间对全球553个组织所经历的真实数据泄露进行的深入分析,报告由Ponemon Institute进行,这是连续第18年发布。
报告中的主要发现包括:检测和升级成本在过去三年中增长了42%,在数据泄露成本中占比最高,而且出现了转向更复杂数据泄露调查的趋势。
报告称,企业在计划如何应对日益增加的成本和频率的数据泄露问题上存在着分歧。研究发现,尽管95%受访组织经历过不止一次的数据泄露,但这些组织更有可能将事件成本转嫁给消费者(57%),而不是增加安全投资(51%)。
2023年人工智能自然受到关注,该报告也涵盖了人工智能在数据泄露管理自动化中发挥的重要作用。有趣的是,人工智能有利于安全,因为与不使用人工智能的公司相比,广泛部署人工智能的组织的数据泄露生命周期要短得多——平均短108天。使用人工智能还平均节省了近180万美元的数据泄露成本,成为报告中最具实质性的成本节省措施。
尽管这些人工智能相关的数据令人鼓舞,但仍然存在一些问题。很多组织在勒索软件攻击期间仍然犹豫是否让执法部门介入。虽然一些公司因担心声誉受损而不愿将数据泄露事件公之于众或许可以理解,但对不涉及执法的组织来说,数据泄露生命周期平均延长了33天,并额外产生了470000美元的数据泄露成本。
报告还指出,检测泄露对组织来说是一个重大挑战,只有三分之一的数据泄露事件是由组织自己的安全团队或工具检测到的。与内部发现相比,攻击者暴露的漏洞所造成的成本增加了近100万美元,生命周期延长了近80天。
IBM全球安全服务部总经理Chris McCurdy表示:“对于防御者和攻击者来说,时间就是网络安全的一种新型货币。正如报告所示,早期检测和快速响应可以显着减少数据泄露所带来的影响。安全团队必须关注对手最成功的地方,并集中精力在他们实现目标之前阻止他们。在威胁检测和响应方法方面进行投资,以提高防御者的速度和效率——例如人工智能和自动化——对于改变这种平衡来说是至关重要的。”
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。