中国北京,2023年2月10日——提供人工智能驱动安全网络的领导厂商瞻博网络(NYSE:JNPR)今天发布了最新的瞻博网络全球合作伙伴优势(Juniper Partner Advantage ,JPA)计划。瞻博网络在去年推出了一个新的精英合作伙伴层级Elite Plus,现对JPA进行大规模升级。
精英合作伙伴层级的优质成员数量正在按预期向30%的增速目标迈进,进入2023年,瞻博网络又为其更广泛的JPA合作伙伴优势计划引入了新的内容,通过托管服务帮助合作伙伴为它们的客户提供最具创新性的解决方案。新的JPA架构有助于合作伙伴构建和支持瞻博网络业务,以网络即服务(NaaS)模式经销瞻博网络的解决方案和托管服务。凭借新的设计、销售和市场营销工具,合作伙伴可以定制计划,提升盈利能力,推动持续增长,并获得更多奖励和回报。合作伙伴也可以更快地进入更高层级,预计2023年精英合作伙伴的规模将继续扩大。
瞻博网络全球渠道与虚拟销售集团副总裁Gordon Mackintosh表示:“我们90%的业务都来自合作伙伴,它们的成功对于我们至关重要。我们在2023年升级这一计划,是基于合作伙伴为先的理念,以确保为合作伙伴提供他们发展业务所需的战略、投资和工具。我们相信,凭借业界一流的合作伙伴计划与市场上最具创新性的产品,瞻博网络可为合作伙伴提供更为有力的支持。”
2023计划新增亮点包括:
- 顶级合作伙伴层级Elite Plus:瞻博网络将在今年为最优秀的合作伙伴提供更多支持,包括新的ROI模型、简化的MOU流程和新的奖励措施,推动合作伙伴持续增长。
- 扩展的领军者计划:瞻博网络领军者(Champions)计划于2022年再次启动,其成员已从800人发展至2300人,今后将进一步扩大。2023年,瞻博网络将为包括全球合作伙伴、营销合作伙伴和瞻博网络分销商在内的更大合作伙伴群体提供更多优势。
- 全新数字工具:瞻博网络在今年推出了合作伙伴业务中心和Velocity定价工具。配合PartnerLink,合作伙伴可实时获得瞻博网络团队的帮助,从而快速完成交易。
- 扩展的“多元化+”合作伙伴计划:该计划支持经过认证的多元化合作伙伴企业,并在6个月的时间内发展至44家合作伙伴,并计划在2023年覆盖更大范围。
瞻博网络全球合作伙伴计划和营销副总裁Helda Lopes表示:“通过新的Velocity定价工具、合作伙伴业务中心和优势洞察(Advantage Insights)等资源,我们的合作伙伴在2023年能够更高效地采取行动、更快地完成交易,并在更高水平进行竞争。我们非常重视合作伙伴的成功,愿意通过新的解决方案和计划等助力他们的成功,这些也都是我们实现发展的关键。瞻博网络在不同层次的分销合作伙伴数量在2022年增加了18%,我们预计2023年将继续保持这一增长趋势。”
随着合作伙伴计划不断发展壮大,瞻博网络也在扩大领导层团队,以确保公司适应现代网络的挑战,继续快速推进业务。因此,Ben Fallon加入了瞻博网络,任全球合作伙伴与虚拟销售副总裁,负责根据瞻博网络快速发展的虚拟销售形势进一步优化渠道合作。他拥有丰富的全球渠道、分销、欧洲、中东和非洲商业、小企业与安全销售和市场开发经验,为瞻博网络带来了深厚的行业知识和前瞻性理念。
Ben Fallon表示:“瞻博网络对Mist、Apstra和128 Technologies等公司的投资让我们可以继续引领下一代企业网络。我十分高兴在这一激动人心的时刻加入瞻博网络团队。”
以上计划于近日启动,更多信息将于瞻博网络年度合作伙伴高层峰会上分享。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。