2022 年 2 月,网络安全解决方案提供商 Check Point® 软件技术有限公司(纳斯达克股票代码:CHKP)为 Check Point CloudGuard 云原生应用保护平台 (CNAPP) 增添了全新风险管理引擎及增强功能。新增功能包括智能风险优先级排序、无代理扫描、授权管理和流水线安全。这些新功能注重上下文、速度和自动化,可支持云安全操作,消除与传统独立云安全警报相关的复杂性,使安全团队能够专注于从代码到云整个应用生命周期的全面威胁防御,同时支持 DevOps 的敏捷性。
在后疫情时代,企业用户的云采用率和数字化转型持续加速。《2022 年云安全报告》 显示,35% 的受访者在云端运行超过 50% 的工作负载。然而,72% 的受访者非常担心云安全性,76% 的受访者表示难以同时管理来自多家云厂商的产品,这通常会导致配置错误、缺乏可视性和遭受网络攻击。此外,该研究还显示,配置错误被视为安全相关事件的首要原因,这可归因于全天候安全操作需求和由此导致的警报疲劳。
Enterprise Strategy Group (ESG) 高级分析师 Melinda Marks 表示:“对于企业来说,在管理安全风险的同时支持更快的云原生开发周期是一项严峻的挑战。随着开发团队的扩大,企业正在寻找一个统一的平台来帮助其确定优先级,并高效采取最有效的措施来降低安全风险,从而掌握主动,摆脱被动局面。”
在推出有效风险管理 (ERM) 之后,除了云身份和授权管理 (CIEM)、无代理工作负载状态 (AWP) 和流水线安全工具以外,Check Point CloudGuard 现在还提供智能风险优先级排序,支持团队在整个软件开发生命周期根据风险严重程度快速消除重大漏洞,例如配置错误和超权限访问。企业内部的协作将变得简单明了,并专注于紧要的威胁,从而降低之前让人头疼的复杂性。最大限度地降低这种复杂性也有助于减少威胁。
Check Point 软件技术公司云安全副总裁 TJ Gonen 表示:“随着云落地进程持续加速,简化云安全防护的能力变得至关重要。通过增添有效风险管理和增强 Check Point CloudGuard 的 CNAPP 功能,我们可帮助企业实现 CNAPP“左移”,采取预防为主、易于管理的云安全方案。借助我们的上下文人工智能和风险评分引擎,安全团队不必再手动确定首先对哪些警报进行修复处理,机器将帮助他们完成这项工作。通过减轻这一负担,客户可以放心地将关键工作负载迁移到云端。”
Check Point CloudGuard 将最新工具整合到新一代 CNAPP 功能中,可助安全专业人员一臂之力,同时通过 ShiftLeft 工具消除 DevSecOps 的障碍。Check Point CloudGuard 提供了“统一”所蕴含的能力和潜力,以及面向最终用户的出色业务价值,包括:
Check Point在本月1日于新加坡召开了其一年一度的CPX 360大会。在活动中,Check Point不仅公布了最新网络安全发展与技术趋势,同时发布了包括CNAPP在内的多款重磅解决方案。针对中国市场,Check Point中国将于23年第二季度举办CPX中国大会,届时将有来自全球及本地的安全专家带来更多符合中国市场使用特色的安全解决方案。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。