Cat 6A 的以太网供电 (PoE)
根据美国市场研究公司 Grand View Research 的预测,截止 2025 年,全球 PoE 市场规模将达到 37.7 亿美元。随着室内外部署的有源传感器、设备和控制器越来越多,以太网供电(PoE)的重要性也在不断提升。一方面,更多的网络设备如 IP 安全摄像头、Wi-Fi 接入点、室内无线网络、楼宇管理系统和 LED 照明等开始让以太网供电的传输距离增加。截至目前,当代 PoE++ 系统可提供高达 90 W 的功率,足以运行最新、耗电量更高的网络设备。超六类(Cat 6A)正是能为 PoE++ 应用提供更加优异供电性能与距离的布线之选,且具备更强的散热性。
导致温度升高和火灾隐患的部分原因是单个导体中的热量增加。导体越小,热量增加越多。承载 400 mA 电流的 Cat 5 线缆温度升高约 10℃,而承载同样电流的 Cat 6A 线缆温度升高 6℃。热量累积还取决于线束中的线缆数量。您可以部署合理的策略来减轻这个问题的影响。
影响不大。热负荷影响成束线缆的主要原因在于线缆的长度和密度。机架中优化的理线方式可提供良好通风和散热。因此,机架内的影响可以忽略不计。
不确定。电力传输不会受到影响,但会影响数据传输。为了防止出现这种情况,建议参考我们的 PoE 实施指南。
如果没有明火,可能性极低。成束线缆会发热,但不会达到酿成火灾的水平。热负荷的影响仅限于电气性能。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。