2022 年 11 月, 网络安全解决方案提供商 Check Point® 软件技术有限公司(纳斯达克股票代码:CHKP)发布了其 2022 年 10 月最新版《全球威胁指数》报告。本月,键盘记录器 AgentTesla 位居传播最广泛的恶意软件榜首,影响了全球 7% 的机构。信息窃取程序 Lokibot 引发的攻击事件数量显著增加,五个月来首次位列排行榜第三位。此外,报告还披露了影响 Apache Commons Text 库的新漏洞 Text4Shell。
Lokibot 是一种商品信息窃取程序,可从各种应用中获取凭证,包括:Web 浏览器、电子邮件客户端及 IT 管理工具。作为一种木马程序,其目标是伪装成合法程序潜入用户系统。它可通过网络钓鱼电子邮件、恶意网站、短消息及其他消息传递平台进行传播。该信息窃取程序的日益猖獗可能与以在线查询、订单和付款确认消息为主题的垃圾邮件攻击活动的增加有关。
10 月份还披露了一个新的重大漏洞 — Text4Shell (CVE-2022-42889)。该漏洞基于 Apache Commons Text 的功能,允许通过网络发起攻击,而无需任何特定权限或用户交互。Text4shell 很像 Log4Shell 漏洞,后者被披露已一年之久,作为一项主要威胁,在 10 月份排行榜中位列第二。尽管 Text4Shell 没有跻身本月最常被利用的漏洞排行榜,但已经影响了全球超过 8% 的机构,Check Point 将继续密切关注其所产生的影响。
Check Point 软件技术公司研究副总裁 Maya Horowitz 表示:“本月排名发生了很大的变化,一组新恶意软件家族构成了三大害。有意思的是,Lokibot 如此迅速地重返榜单第三位,这表明网络钓鱼攻击呈现增长趋势。随着我们进入 11 月购物旺季,人们必须保持警惕,并留意可能附带恶意代码的可疑电子邮件。务必注意一些蛛丝马迹,例如不熟悉的发件人、个人信息提交请求和链接。如有疑问,请直接访问网站并从经过验证的来源查找相应的联系信息,确保您已安装恶意软件防护。”
CPR 还指出,“Web Server Exposed Git 存储库信息泄露”是最常被利用的漏洞,全球 43% 的机构因此遭殃,紧随其后的是“Apache Log4j 远程代码执行”,影响了 41% 的机构。10 月,教育/研究行业仍在全球首当其冲的行业中位列第一。
头号恶意软件家族
* 箭头表示与上月相比的排名变化。
本月,AgentTesla 是传播最广泛的恶意软件,全球 7% 的企业受到波及,其次是 SnakeKeylogger 和 Lokibot,分别影响了全球 5% 和 4% 的企业与机构。
最常被利用的漏洞
本月,“Web Server Exposed Git 存储库信息泄露”仍是最常被利用的漏洞,全球 43% 的机构因此遭殃。其次是“Apache Log4j 远程代码执行”,仍然位居第二,影响了 41% 的企业与机构,“HTTP 标头远程代码执行”位列第三,全球影响范围为 39%。
主要移动恶意软件
本月,Anubis 位列最猖獗的移动恶意软件榜首,其次是 Hydra 和 Joker。
Check Point《全球威胁影响指数》及其《ThreatCloud 路线图》基于 Check Point ThreatCloud 情报数据撰写而成。ThreatCloud 提供的实时威胁情报来自于部署在全球网络、端点和移动设备上的数亿个传感器。AI 引擎和 Check Point 软件技术公司情报与研究部门 Check Point Research 的独家研究数据进一步丰富了情报内容。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。