2021 年 3 月, 网络安全解决方案提供商 Check Point 软件技术有限公司(纳斯达克股票代码:CHKP)的威胁情报部门 Check Point Research 发布了 2021 年 2 月最新版《全球威胁指数》报告。研究人员报告称,Trickbot 木马从 1 月份的指数排行榜第三位首次跃升至榜首。

Check Point 研究人员报告称,在 1 月份 Emotet 僵尸网络遭到打击后,网络犯罪团伙目前正利用 Trickbot 等恶意软件变换新手法,继续实施其恶意活动。2 月,Trickbot 通过恶意垃圾邮件攻击活动进行传播,旨在诱骗法律和保险领域用户将带有恶意 JavaScript 文件的 .zip 存档文件下载至其 PC 上。打开该文件后,它将尝试从远程服务器下载其他恶意有效负载。
Trickbot 是 2020 年全球第四大常见的恶意软件,影响了 8% 的组织。它在 2020 年造成严重损失的最重大网络攻击之一中发挥了关键作用。在此次事件中,美国领先的医疗保健服务提供商 — 环球健康服务公司 (UHS) 遭到了 Ryuk 勒索软件的攻击,并表示这场攻击造成的收成和成本损失为 6700 万美元。攻击者使用 Trickbot 从 UHS 的系统中检测并收集数据,然后发送勒索软件有效负载。
Check Point 产品威胁情报与研究总监 Maya Horowitz 表示:“犯罪分子将继续使用现有威胁手段和工具,Trickbot 因其多功能性及以往的攻击战果而获得青睐。正如我们所猜想的那样,即便某一重大威胁被消除,还会有许多其他威胁继续对全球网络构成高风险,因此组织必须确保采用强大的安全系统来防止其网络遭到入侵,并将风险降至最低。对所有员工进行全面培训至关重要,这样他们才能够掌握所需技能,从而准确识别传播 Trickbot 及其他恶意软件的恶意电子邮件类型。”
Check Point Research 还警告称,“Web Server Exposed Git 存储库信息泄露”是最常被利用的漏洞,全球 48% 的组织因此遭殃,其次是“HTTP 标头远程代码执行 (CVE-2020-13756)”,影响了全球 46% 的组织。“MVPower DVR 远程代码执行”在最常被利用的漏洞排行榜中位列第三,全球影响范围为 45%。
头号恶意软件家族
* 箭头表示与上月相比的排名变化
Trickbot 是本月最活跃的恶意软件,影响了全球 3% 的组织,紧随其后的是 XMRig 和 Qbot,分别影响了全球 3% 的组织。
最常被利用的漏洞
本月,“Web Server Exposed Git 存储库信息泄露”是最常被利用的漏洞,全球 48% 的组织因此遭殃,其次是“HTTP 标头远程代码执行 (CVE-2020-13756)”,影响了全球 46% 的组织。“MVPower DVR 远程代码执行”在最常被利用的漏洞排行榜中位列第三,全球影响范围为 45%。
主要移动恶意软件
本月,Hiddad 位列最猖獗的移动恶意软件榜首,其次是 xHelper 和 FurBall。
Check Point《全球威胁影响指数》及其《ThreatCloud 路线图》基于 Check Point ThreatCloud 情报数据撰写而成,ThreatCloud 是打击网络犯罪的最大协作网络,可通过全球威胁传感器网络提供威胁数据和攻击趋势。ThreatCloud 数据库每天检查超过 30 亿个网站和 6 亿份文件,每天识别超过 2.5 亿起恶意软件攻击活动。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。