2021 年 3 月, 网络安全解决方案提供商 Check Point 软件技术有限公司(纳斯达克股票代码:CHKP)的威胁情报部门 Check Point Research 发布了 2021 年 2 月最新版《全球威胁指数》报告。研究人员报告称,Trickbot 木马从 1 月份的指数排行榜第三位首次跃升至榜首。
Check Point 研究人员报告称,在 1 月份 Emotet 僵尸网络遭到打击后,网络犯罪团伙目前正利用 Trickbot 等恶意软件变换新手法,继续实施其恶意活动。2 月,Trickbot 通过恶意垃圾邮件攻击活动进行传播,旨在诱骗法律和保险领域用户将带有恶意 JavaScript 文件的 .zip 存档文件下载至其 PC 上。打开该文件后,它将尝试从远程服务器下载其他恶意有效负载。
Trickbot 是 2020 年全球第四大常见的恶意软件,影响了 8% 的组织。它在 2020 年造成严重损失的最重大网络攻击之一中发挥了关键作用。在此次事件中,美国领先的医疗保健服务提供商 — 环球健康服务公司 (UHS) 遭到了 Ryuk 勒索软件的攻击,并表示这场攻击造成的收成和成本损失为 6700 万美元。攻击者使用 Trickbot 从 UHS 的系统中检测并收集数据,然后发送勒索软件有效负载。
Check Point 产品威胁情报与研究总监 Maya Horowitz 表示:“犯罪分子将继续使用现有威胁手段和工具,Trickbot 因其多功能性及以往的攻击战果而获得青睐。正如我们所猜想的那样,即便某一重大威胁被消除,还会有许多其他威胁继续对全球网络构成高风险,因此组织必须确保采用强大的安全系统来防止其网络遭到入侵,并将风险降至最低。对所有员工进行全面培训至关重要,这样他们才能够掌握所需技能,从而准确识别传播 Trickbot 及其他恶意软件的恶意电子邮件类型。”
Check Point Research 还警告称,“Web Server Exposed Git 存储库信息泄露”是最常被利用的漏洞,全球 48% 的组织因此遭殃,其次是“HTTP 标头远程代码执行 (CVE-2020-13756)”,影响了全球 46% 的组织。“MVPower DVR 远程代码执行”在最常被利用的漏洞排行榜中位列第三,全球影响范围为 45%。
头号恶意软件家族
* 箭头表示与上月相比的排名变化
Trickbot 是本月最活跃的恶意软件,影响了全球 3% 的组织,紧随其后的是 XMRig 和 Qbot,分别影响了全球 3% 的组织。
最常被利用的漏洞
本月,“Web Server Exposed Git 存储库信息泄露”是最常被利用的漏洞,全球 48% 的组织因此遭殃,其次是“HTTP 标头远程代码执行 (CVE-2020-13756)”,影响了全球 46% 的组织。“MVPower DVR 远程代码执行”在最常被利用的漏洞排行榜中位列第三,全球影响范围为 45%。
主要移动恶意软件
本月,Hiddad 位列最猖獗的移动恶意软件榜首,其次是 xHelper 和 FurBall。
Check Point《全球威胁影响指数》及其《ThreatCloud 路线图》基于 Check Point ThreatCloud 情报数据撰写而成,ThreatCloud 是打击网络犯罪的最大协作网络,可通过全球威胁传感器网络提供威胁数据和攻击趋势。ThreatCloud 数据库每天检查超过 30 亿个网站和 6 亿份文件,每天识别超过 2.5 亿起恶意软件攻击活动。
好文章,需要你的鼓励
OpenAI发布了音视频生成模型Sora 2,同时推出配套社交应用Sora,用户可生成包含自己的视频并在类似TikTok的信息流中分享。Sora 2在物理定律遵循方面有显著改进,视频更加真实。应用提供"客串"功能,允许用户将自己植入生成场景中,并可与朋友分享形象使用权限。该iOS应用目前在美加地区采用邀请制,ChatGPT Pro用户可直接体验。
Scale AI团队推出SWE-Bench Pro测试平台,专门评估AI编程助手在真实企业级软件开发中的表现。研究发现,即使是最先进的GPT-5和Claude模型,成功率也仅有23%左右,远低于在传统测试中70%的表现。该测试平台包含1865个来自真实企业的复杂编程任务,要求修改多个文件和大量代码,为AI编程能力提供了更严格的现实检验。
大语言模型和生成式AI自诞生以来问题频发,从推理模型表现不佳到AI幻觉现象,再到版权诉讼,这些都表明当前技术路径可能并非通往真正智能的正确道路。专家认为,仅靠增加数据和算力的扩展模式已显现边际效应递减,无法实现通用人工智能。研究者提出智能应包含统计、结构、推理和目标四个层次的协调,并强调时间因果性的重要性。面对LLM技术局限,业界开始探索神经符号AI等替代方案。
微软团队开发的EdiVal-Agent是首个针对AI图像编辑的自动化评估系统,能像专业评委一样从指令遵循、内容一致性和视觉质量三维度评分。该系统与人类评审一致性达81.3%,测试发现Nano Banana表现最均衡,GPT-Image-1指令遵循最佳但一致性不足,大多数模型在数量变化任务中成功率低于25%。