2021 年 1 月,网络安全解决方案提供商Check Point 软件技术有限公司(纳斯达克股票代码:CHKP)的威胁情报部门 Check Point Research 发布了其新版《2020 年第四季度品牌网络钓鱼报告》。该报告重点介绍了去年 10 月、11 月和 12 月犯罪分子在企图窃取个人信息或支付凭证时最常模仿的品牌。
同去年第三季度一样,Microsoft 在第四季度再次成为网络犯罪分子最常模仿的品牌。这家科技巨头占所有品牌网络钓鱼攻击的 43%(高于第三季度的 19%),攻击者仍企图利用新冠肺炎疫情二次爆发期间远程办公的人员发起攻击。DHL 稳居最常模仿品牌第二名,占所有网络钓鱼攻击的 18%,网络犯罪分子试图利用 11 月和 12 月的线上购物季发起攻击。
科技行业是品牌网络钓鱼攻击的潜在首选目标,其次是运输和零售业,这表明攻击者如何在用户广泛使用远程办公技术并在购物高峰期在线订购商品时利用这些行业的知名品牌来诱骗用户。
Check Point 产品威胁情报与研究总监 Maya Horowitz 表示:“2020 年第四季度,网络犯罪分子通过冒充领先品牌窃取个人数据的图谋有所增长,我们的数据清楚地表明了他们如何改变网络钓鱼策略来提升攻击成功率。我们再三提醒广大用户,谨慎将个人数据和凭证透漏给业务应用,并慎重打开电子邮件附件或链接,特别是声称来自 Microsoft 或 Google 等最常被模仿公司的电子邮件。”
在品牌网络钓鱼攻击中,犯罪分子试图使用与真实网站相似的域名或 URL 和网页设计来模仿知名品牌的官方网站。指向虚假网站的链接可通过电子邮件或文本消息发送给目标个人,并将在 Web 浏览时重定向用户,或可能从欺诈性移动应用进行触发。虚假网站通常包含一个表单,以窃取用户凭证、付款明细或其他个人信息。
2020 年第四季度最常被利用的网络钓鱼攻击品牌
最常被利用的品牌按其在网络钓鱼攻击中的总出现率进行排名:
Microsoft(占全球所有品牌网络钓鱼攻击的 43%)
DHL (18%)
LinkedIn (6%)
Amazon (5%)
Rakuten (4%)
IKEA (3%)
Google (2%)
Paypal (2%)
Chase (2%)
Yahoo (1%)
DHL 网络钓鱼电子邮件 – 密码窃取示例
11 月,我们发现了一封恶意钓鱼邮件,该电子邮件冒充 DHL 品牌,企图窃取用户密码。该电子邮件(见图 1)从欺诈性电子邮件地址发送,包含了主题“答复:您的 DHL 包裹(待取) – [<收件人电子邮件地址>]”以及用户的电子邮件内容。攻击者试图诱骗受害者点击恶意链接,将用户重定向至欺诈性登录页面,并在用户输入密码后,将其重定向至攻击者指定的站点。
Microsoft 网络钓鱼电子邮件 – 凭证窃取示例
12 月,我们发现了一封恶意网络钓鱼电子邮件,该电子邮件试图窃取 Microsoft Office 365 帐户用户的凭证。该电子邮件(见图 2)包含了每日一文 #- <ID 号>主题和模仿 eFax 服务的内容。用户点击链接后将被重定向至另一个文档,进而被重定向至欺诈性的 Microsoft 登录页面。
Check Point《品牌网络钓鱼报告》基于 Check Point ThreatCloud 情报数据撰写而成,ThreatCloud 是打击网络犯罪的最大协作网络,可通过全球威胁传感器网络提供威胁数据和攻击趋势。ThreatCloud 数据库每天检查超过 30 亿个网站和 6 亿份文件,每天识别超过 2.5 亿起恶意软件攻击活动。
好文章,需要你的鼓励
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
这项由香港中文大学和AWS团队联合开发的研究推出了TALK2MOVE系统,实现了用自然语言精准操作图片中物体的位置、角度和大小。该系统采用强化学习训练方式,通过空间感知奖励机制和智能步骤采样技术,在移动、旋转、缩放三类操作上的准确率显著超越现有方法,同时大幅降低了对昂贵训练数据的依赖,为AI图像编辑领域带来重要突破。
研究人员对Claude、GPT-4、Gemini和Grok等商用AI模型进行测试,发现这些模型能够记忆并完整输出受版权保护的内容。其中越狱后的Claude 3.7 Sonnet能输出95.8%的《哈利波特与魔法石》内容,而Gemini和Grok在无需越狱情况下也能输出超过70%的内容。这一发现可能对正在进行的AI版权诉讼产生重要影响,目前多家AI公司面临超过60项相关法律诉讼。
斯坦福大学等知名机构联合研究发现,企业AI助手在执行组织政策时存在严重"偏科"问题:处理允许请求时成功率超95%,但拒绝违规请求时仅13-40%。研究团队开发的COMPASS评估框架通过8个行业5920个测试问题,揭示了AI助手普遍缺乏"拒绝技能"的问题,并提出了针对性训练解决方案。