在美国各地数以百万计的员工首次尝试居家办公的情况下,许多组织已开始重新审视零信任安全战略。趋势和技术的融合,再加上对仅仅依靠外围防御实现安全保护所带来风险的新认识,都意味着让零信任成为主流的时机已经成熟。
传统上,IT 安全基于外围防御模型,例如中世纪由护城河环绕的城堡、修建有围墙的城市。这种理念的目的是把入侵者挡到共享空间之外,同时假设围墙内的人都是可以信任的,可以在围墙内自由漫游(或多或少)。
由于目前网络必须容纳的互联设备数量激增,外围安全战略多年来一直处于困境之中。近期发生的一些事件进一步突显了外围防御的局限性,因为 IT 部门在应对突然增多且都是首次使用不受 IT 控制的家用计算机来接入网络的远程工作人员时,显得异常艰难。
零信任假设任何人都不能信任,这颠覆了传统的网络安全。虽然这听起来有些苛刻,但只要能做到,每个人的工作都会变得更轻松。
想要做到这一点并非易事。若要让“零信任”发挥作用,采用者需要在整个组织范围内作出承诺。他们需要对所有 IT 和数据资产进行分类,并根据角色分配访问权限。在这一过程中,他们需要锁定一些常见漏洞。举例来说,绝对不允许 Web 服务器直接与其他 Web 服务器通信,而只能通过指定的端口与应用服务器进行通信。
数据也需要进行分类。某些信息,例如公司团队的垒球时间安排表,可能根本不需要任何保护。商业秘密和其他专有数据则需要受限用户类别进行多级身份验证。
需要对网络进行分段,以禁止横向移动,而横向移动长期以来一直都是大规模数据泄露的元凶。当工作负载在虚拟机和云服务器之间移动时,必须彼此隔离并受到保护。直到最近,管理这样的环境也一直都是一项艰巨任务,不过形势正在发生变化。
第一个重要的发展是,多重身份验证 (MFA) 最终成为了主流:LastPass 披露的数据显示,去年的业务采用率增长至 57%(之前一年为 45%)。MFA 使用二级甚至是三级身份验证,其范围涵盖了从硬件设备到发送给手机的短信代码。尽管它还不够完善,但相比很久以前就已失去作用的基本密码安全机制而言,它是一个巨大进步。
一项重要的技术发展是软件定义网络 (SDN) 的成熟,其中网络管理从物理防火墙和交换机转移到软件。在 SDN 网络中,由于分段是由软件定义并由策略管理的,因此实现网络分段要容易得多。Verizon 近期的一项调研发现,57% 的组织希望在两年内实施 SDN,而目前只有 15% 的组织希望采用 SDN。
第三个重要发展是健全的身份和访问管理 (IAM) 系统。这些软件平台通常作为服务交付,会创建联合身份,而这些身份会随用户在整个企业网络和云应用中传播。IAM 会强制执行组织定义的身份验证策略。用户登录一次即可访问大多数的应用,无需跟踪多个登录名和密码。
零信任并不容易实现。上面提到的想法可以帮助您的组织朝着正确的方向迈进,但是如果您不能在一个月甚至一个季度内革新战略,就不要挑战自己的极限。Silicon Angle 报道称,Lexmark 用了两年的时间围绕零信任原则来全面革新服务于 8,500个用户的网络。
这一过程需要对公司的所有数据和 IT 资产进行分类,还需要封闭一些漏洞,比如个人计算机上的默认管理权限。首席信息安全官 (CISO) Bryan Willett 花了很多时间向持怀疑态度的用户解释这一决定,但最终的结果是值得的。现在,他们可以更轻松地获取所需数据,而且由第三方服务机构评出的公司安全准备程度得分也大大提高。
当组织针对可能出现的业务中断做准备时,零信任模型会让他们更加放心。在 Gartner 魔力象限当中, IBM IAM 连续三年占据领导者地位。访问 “IBM 安全专题”,了解更多企业安全策略与实践案例。
Gillin + Laberis 合作伙伴
Paul Gillin曾撰写过有关社交和数字营销主题的 5 本书和 300 多篇文章,目前是一名全职专栏作家。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。