Marvell 近日宣布推出集成的接入、聚合和核心以太网交换机与 PHY 解决方案产品组合,该产品组合可智能实现整个企业网络中安全高效的数据移动。Marvell 统一的产品组合将 Prestera以太网交换机和 Alaska PHY 解决方案相结合,集合富有洞察力的遥测技术、流感知智能、可扩展的性能和先进的集成式安全技术,可满足当今企业日益复杂的网络需求。
Marvell是一家拥有25年历史的公司,今年Marvell对公司进行了战略调整,定位为一家专注于为数字基础设施打造关键技术的公司,致力于提供领先的半导体解决方案、实现全球数据的高速传输、存储、处理及保护。同时,Marvell还推出了全新的口号:Essential technology,done right(关键技术,应用有方),即不光在技术上做好,还要与客户协同把技术用好。
“Marvell坚信基础设施是推动社会进步的重要力量。现在的我们会聚焦核心业务,依托自身独特的数据基础设施半导体技术组合为客户的需求提供最优的方案。”Marvell中国区总经理、销售副总裁Pohan Chiang(江柏汉)表示。
而网络基础架构正是Marvell的核心领域,在这个领域Marvell拥有超过20多年的创新与积淀,是企业网络技术创新的领导者,一直紧跟用户的需求持续创新。
Marvell网络产品营销总监Eric Yeh表示,随着IT应用日益走向深入,网络面临的挑战越来越大。这一方面体现在,网络上接入的设备越来越多,大量的IoT设备进入企业网,给企业网的管理带来很大挑战;另一方面,安全成为企业网中的越来越重要的考量标准,尤其是在银行或者是政府机构,敏感信息大量存在,“安全”的重要性尤为突出。
另外,云的应用让网络管理更复杂,大量企业采用了“混合云”来承载应用,这些应用可能会运行在企业的数据中心之内也可能运行企业数据中心之外的公有云上。
“Marvell内部有个说法,就是Borderless Enterprise(无边界企业),意思是说企业网不只是在大楼里面或者是固定的范围(一个小的区域或者小的城市里面),它可能遍布在各个地方。这个时候对于资料的运用、对于频宽的应用、如何能够更方便管理,这是一个难题。”Eric Yeh说。
上述种种现状使得传统基于企业边界的网络架构在管理和运维上越来越力不从心,网络管理的复杂凸显出AI的必要性。随着AI技术的成熟,人们开始应用AI技术让网络设备能自适应地做出改变,即无需人工参与网络设备就能自动对参数进行调整来更有效率的分析和传送资料。
“智能”也正Marvell全新网络产品组合的一大特色。Marvell全新产品组合提供包括GE、2.5GE、5GE、10GE、25GE、100GE 和 400GE 的全套连接能力,旨在契合大、中、小型企业 IT 组织不同速度、密度和规模的各种网络架构。最新一代解决方案由四款最先进的 Prestera 以太网交换机和相应的 Alaska 以太网 PHY 组成,为企业网络升级到多千兆以太网以支持 Wi-Fi 6 和 5G 部署提供了清晰路径。Marvell 的智能工作负载管理功能,支持在网络接入边缘或其附近优化数据处理,可提高混合云架构的性能。
除了智能化之外,Marvell新一代网络产品组合在可视化、安全性和性能上也有很大的改进。其中,富有洞察力的遥测功能支持解决方案生成数据,帮助实现网络自动化并加快取证分析;先进的安全特性进一步巩固了可信度,为网络提供了嵌入式保护,有效阻挡不断变化的安全威胁;为了支持零售业、制造业、酒店业、金融业和教育业的新应用场景;配备支持 Wi-Fi 6 的接入点和高性能终端设备,促进向多千兆以太网连接的过渡。该产品组合提供跨网络的容量,以满足不断增加的工作负载和数据云化带宽需求,这对于确保网络性能和连续性至关重要。
除了硬件部分外,Marvell新一代的企业级交换机包含软件开发工具包,添加行业标准的交换机抽象接口,使网络系统供应商能够轻松地在不同的网络芯片选择之间进行迁移。Marvell 持续为丰富的生态系统提供强大支持,其中包括 Linux 基金会的 DENT、开放计算项目的 SONiC,以及各种商用网络软件解决方案,例如 Marvell 自主研发的交钥匙网络软件堆栈,为 原始设备制造商提供全面的选择平台。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。