至顶网网络频道 05月18日 编译:英特尔正在加紧推进人工智能,并发布了一个新的工具包,让开发人员能够在网络边缘部署计算机视觉,以用于摄像头和物联网设备。
英特尔表示,这个名为Open Visual Inference & Neural Network Optimization(OpenVINO)的工具包兼容主流的机器学习框架,例如开源的TensorFlow和Caffe。
OpenVINO旨在配合英特尔常规CPU以及专用加速器硬件(例如FPGA,针对特定任务编程的计算机芯片)一起工作。OpenVINO还兼容英特尔在2月发布的Movidius视觉处理单元,后者旨在加快人工智能算法的执行速度。
开发人员借助OpenVINO可以在云中构建和训练人工智能模型,并将其部署到各种产品中。例如,在零售企业工作的开发人员可以使用该工具包将计算机视觉功能部署到POS机、安全摄像头或数字标牌中的各种边缘应用中。
英特尔高级副总裁、物联网总经理Tom Lantzsch在一篇博客文章中表示:“处理高质量视频需要能够快速分析边缘附近的大量数据流并实时响应,而且只把有相关性的洞察异步转移到云中。OpenVINO工具包旨在快速开发在边缘位置的高性能计算机视觉和深度学习推理应用。”
OpenVINO工具包中有3个新的API:深度学习部署工具包、一个涵盖英特尔视觉产品的通用深度学习推理工具包、以及针对OpenCV和OpenVX的优化功能。
Moor Insights&Strategy分析师Patrick Moorhead表示,OpenVINO是英特尔推出的一项受欢迎的补充,因为它为开发人员提供了“跨越不同加速器、更容易的物联网边缘编程路径”,这里说的加速器包括图形卡、FPGA和Movidius可编程ASIC。Moorhead之前曾指出,尤其是FPGA难以编程,但表示英特尔正在致力于解决这个问题。
英特尔表示,GE Healthcare等一些大型企业已经在使用OpenVINO,GE Healthcare主要将其用于医疗成像应用。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。