至顶网网络频道 05月18日 编译:英特尔正在加紧推进人工智能,并发布了一个新的工具包,让开发人员能够在网络边缘部署计算机视觉,以用于摄像头和物联网设备。
英特尔表示,这个名为Open Visual Inference & Neural Network Optimization(OpenVINO)的工具包兼容主流的机器学习框架,例如开源的TensorFlow和Caffe。
OpenVINO旨在配合英特尔常规CPU以及专用加速器硬件(例如FPGA,针对特定任务编程的计算机芯片)一起工作。OpenVINO还兼容英特尔在2月发布的Movidius视觉处理单元,后者旨在加快人工智能算法的执行速度。
开发人员借助OpenVINO可以在云中构建和训练人工智能模型,并将其部署到各种产品中。例如,在零售企业工作的开发人员可以使用该工具包将计算机视觉功能部署到POS机、安全摄像头或数字标牌中的各种边缘应用中。
英特尔高级副总裁、物联网总经理Tom Lantzsch在一篇博客文章中表示:“处理高质量视频需要能够快速分析边缘附近的大量数据流并实时响应,而且只把有相关性的洞察异步转移到云中。OpenVINO工具包旨在快速开发在边缘位置的高性能计算机视觉和深度学习推理应用。”
OpenVINO工具包中有3个新的API:深度学习部署工具包、一个涵盖英特尔视觉产品的通用深度学习推理工具包、以及针对OpenCV和OpenVX的优化功能。
Moor Insights&Strategy分析师Patrick Moorhead表示,OpenVINO是英特尔推出的一项受欢迎的补充,因为它为开发人员提供了“跨越不同加速器、更容易的物联网边缘编程路径”,这里说的加速器包括图形卡、FPGA和Movidius可编程ASIC。Moorhead之前曾指出,尤其是FPGA难以编程,但表示英特尔正在致力于解决这个问题。
英特尔表示,GE Healthcare等一些大型企业已经在使用OpenVINO,GE Healthcare主要将其用于医疗成像应用。
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。