F5 Networks (NASDAQ: FFIV) 近日宣布推出"超级网络运营 (Super NetOps)计划",旨在帮助企业和更广泛的 IT 行业更有效地实施自动化、提升绩效水平、消除长期存在的技能缺口,并帮助 IT 专业人员通过 DevOps 方法交付关键网络运营功能。这是亚太地区首例类似培训计划。
在不断变化的威胁形势和多云环境下,人们对自动化应用服务交付方式的需求也与日俱增。这一对更高的 IT 基础设施内部效率的需求带来了关键技术和新兴技术专业技能的缺口 - 企业认为这是阻碍它们获得成功的关键因素 。
F5 Networks 中国日本和亚太地区高级副总裁 Adam Judd 表示:"根据多数客户的反馈,技能缺口是他们普遍面临的一个问题,尤其是在 NetOps 和 DevOps 团队的工作实践和协作中。由于对 IT 服务的需求超出了基于任务的人工方法的能力范围,F5 决定直面这一挑战,为企业提供合适的工具和培养优秀人才,帮助行业进一步发展。"
F5 全球"超级网络运营计划"旨在帮助参与者同时掌握关键和新兴网络技术技能,让网络运营 (NetOps) 社区与开发人员 (DevOps) 之间实现更紧密的协作,并推动基于任务的人工实践转向更高的自动化水平,从而确保持续的业务改进和投资回报。该计划已经在数百名 F5 客户中进行了试验,可有效帮助企业打破运营孤岛,将服务时间从几天缩短到几分钟,同时确保应用符合必要的法规要求、策略和性能标准。
F5"超级网络运营计划"采用视频教程结合实验室实践的形式,并专门根据亚太地区独特的文化差异进行了本地化。该计划的推出可谓恰逢其时,目前该地区各国政府正在出台政策弥补特定的技能缺口。例如,新加坡最近发布的 2018 年财政预算案强调了协同发展企业能力和人力资本的重要性 - 其中包括为发展各年龄段劳动者深层次技能而制定的多项计划 。
在接下来的几个月里,F5 将推出一项拓展课程,其中包括新兴 DevSecOps 角色须掌握的以安全为中心的自动化部署方法。其他特色主题还包括应用语言框架和第三方自动化工具链的实施。
Judd 补充说:"由于亚太地区的大多数企业都希望能够在 2020 年之前扩展其数字产品和服务,因此,网络运营专业知识比以往任何时候都重要,尤其是在更快速、更智能、更安全的应用愿景驱动下。而对于如何通过可编程性实现所需的编排和灵活性,进而在数字经济中取得成功,这是传统 IT 团队面临的一个重大课题。未来将更加自动化,没有谁比知道如何保持互联网经济引擎运转的工程师和架构师更适合部署网络自动化。"
F5 (NASDAQ: FFIV) 助力全球最大企业、服务提供商、政府和消费品牌提升应用的速度、智能性和安全性。F5 提供云和安全解决方案,使企业能够充分利用所选择的应用基础设施,而无需牺牲速度和控制能力。如欲了解更多信息,请访问 f5.com。您还可以在 微博上关注 @F5中国官方微博,以了解更多关于 F5 及其合作伙伴与技术的信息。
F5 是 F5 Networks 公司在美国和其他国家或地区的商标或服务标记。文中提到的所有其他产品和公司名称可能是各自所有者的商标。
本新闻稿可能包含有关未来活动或未来财务业绩、涉及风险和不确定性的前瞻性声明。这些陈述可通过以下词汇辨别:"可能"、"将要"、"应该"、"预计"、"计划"、"预期"、"相信"、"估计"、"预测"、"潜在"或"继续",或这类词汇的反义词或类似词汇。这类陈述基于各类因素(包括公司提交给 SEC 材料中所提到的因素)作出,仅用于预测,实际情况可能大相径庭。
好文章,需要你的鼓励
传统数据工程面临数据质量差、治理不善等挑战,成为AI项目的最大障碍。多智能体AI系统通过协作方式正在彻底改变数据准备、治理和应用模式。Google Cloud基于Gemini大语言模型构建协作生态系统,让不同智能体专门负责数据工程、科学、治理和分析等任务。系统通过分层架构理解组织环境,自主学习历史工作流程,能够预防问题并自动处理重复性任务,大幅提升效率。
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
微软推出Copilot调优功能,让企业通过低代码工具利用自动化微调技术训练企业数据。与基于公开数据的通用AI模型不同,企业需要理解内部数据和流程的专业化模型。Gartner预测专业化GenAI模型市场将在2026年翻倍至25亿美元。这些模型通常基于开源模型构建,部署为小语言模型,提供更好的成本控制和数据安全性,同时更易符合欧盟AI法案要求。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。