F5 Networks (NASDAQ: FFIV) 近日宣布推出"超级网络运营 (Super NetOps)计划",旨在帮助企业和更广泛的 IT 行业更有效地实施自动化、提升绩效水平、消除长期存在的技能缺口,并帮助 IT 专业人员通过 DevOps 方法交付关键网络运营功能。这是亚太地区首例类似培训计划。
在不断变化的威胁形势和多云环境下,人们对自动化应用服务交付方式的需求也与日俱增。这一对更高的 IT 基础设施内部效率的需求带来了关键技术和新兴技术专业技能的缺口 - 企业认为这是阻碍它们获得成功的关键因素 。
F5 Networks 中国日本和亚太地区高级副总裁 Adam Judd 表示:"根据多数客户的反馈,技能缺口是他们普遍面临的一个问题,尤其是在 NetOps 和 DevOps 团队的工作实践和协作中。由于对 IT 服务的需求超出了基于任务的人工方法的能力范围,F5 决定直面这一挑战,为企业提供合适的工具和培养优秀人才,帮助行业进一步发展。"
F5 全球"超级网络运营计划"旨在帮助参与者同时掌握关键和新兴网络技术技能,让网络运营 (NetOps) 社区与开发人员 (DevOps) 之间实现更紧密的协作,并推动基于任务的人工实践转向更高的自动化水平,从而确保持续的业务改进和投资回报。该计划已经在数百名 F5 客户中进行了试验,可有效帮助企业打破运营孤岛,将服务时间从几天缩短到几分钟,同时确保应用符合必要的法规要求、策略和性能标准。
F5"超级网络运营计划"采用视频教程结合实验室实践的形式,并专门根据亚太地区独特的文化差异进行了本地化。该计划的推出可谓恰逢其时,目前该地区各国政府正在出台政策弥补特定的技能缺口。例如,新加坡最近发布的 2018 年财政预算案强调了协同发展企业能力和人力资本的重要性 - 其中包括为发展各年龄段劳动者深层次技能而制定的多项计划 。
在接下来的几个月里,F5 将推出一项拓展课程,其中包括新兴 DevSecOps 角色须掌握的以安全为中心的自动化部署方法。其他特色主题还包括应用语言框架和第三方自动化工具链的实施。
Judd 补充说:"由于亚太地区的大多数企业都希望能够在 2020 年之前扩展其数字产品和服务,因此,网络运营专业知识比以往任何时候都重要,尤其是在更快速、更智能、更安全的应用愿景驱动下。而对于如何通过可编程性实现所需的编排和灵活性,进而在数字经济中取得成功,这是传统 IT 团队面临的一个重大课题。未来将更加自动化,没有谁比知道如何保持互联网经济引擎运转的工程师和架构师更适合部署网络自动化。"
F5 (NASDAQ: FFIV) 助力全球最大企业、服务提供商、政府和消费品牌提升应用的速度、智能性和安全性。F5 提供云和安全解决方案,使企业能够充分利用所选择的应用基础设施,而无需牺牲速度和控制能力。如欲了解更多信息,请访问 f5.com。您还可以在 微博上关注 @F5中国官方微博,以了解更多关于 F5 及其合作伙伴与技术的信息。
F5 是 F5 Networks 公司在美国和其他国家或地区的商标或服务标记。文中提到的所有其他产品和公司名称可能是各自所有者的商标。
本新闻稿可能包含有关未来活动或未来财务业绩、涉及风险和不确定性的前瞻性声明。这些陈述可通过以下词汇辨别:"可能"、"将要"、"应该"、"预计"、"计划"、"预期"、"相信"、"估计"、"预测"、"潜在"或"继续",或这类词汇的反义词或类似词汇。这类陈述基于各类因素(包括公司提交给 SEC 材料中所提到的因素)作出,仅用于预测,实际情况可能大相径庭。
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。