至顶网网络频道 01月18日 综合消息: 思博伦通信助力业界领先的以太网交换芯片及SDN白牌解决方案提供商盛科网络, 成功完成了面向5G时代的速率基础和业务基础联合测试,展示了富有前瞻性的5G网络承载与互联方案。
5G网络更高的传输速率和更为灵活的传输组网特点,本次联合测试重点验证了盛科E550平台面向5G的100G/50G/25G基础速率下互联和高性能转发能力、快速重路由(Fast Re-route,FRR)和分段路由支持能力,测试结果展示了盛科网络E550平台优秀的以太网交换性能,以及对5G承载网络关键技术上的支持与创新。
5G时代,随着超高清视频、网络直播、游戏、VR等大带宽应用的进一步发展,网络承载速率将迈入“后10GE”时代,25GE、50GE甚至100GE将成为接入及汇聚网络的主流速率。在业务层面上,面对更加丰富的业务和多样化的用户需求,运营商需要承载网络更加可订制化和职能化。SDN架构将在5G承载网络中得到极大的应用,其中以MPLS标签为承载基础的分段路由已得到运营商的极大关注,其面向SDN的业务部署灵活性和基于标签的转发架构,很好地将传统业务框架与新型业务部署方式有效结合,在保障安全及性能的同时提供了丰富的业务灵活性。
测试展示的盛科E550 平台是基于盛科网络最新发布的第五代高性能以太网核心交换芯片DUET2(CTC7148)搭建,DUET2单芯片可支持640Gbps的转发速率,支持Multi-Gig新速率,支持10G/25G/40G/50G/100G端口、分段路由、无线管理协议CAPWAP专有引擎及网络安全MACSec等新特性。在创新应用的同时,DUET2也延续并增强了其系列芯片高性价比和低功耗的优势。
盛科网络市场部总监王峰表示:“盛科一直致力于为客户提供最富竞争力和创新力的网络承载方案。盛科过去的芯片已经规模部署在国内外的运营商承载网络,赢得了客户的好评。盛科也投入了大量的研发来满足5G时代的全新要求和挑战。除了基础速率的快速升级,应用的融合和SDN理念的实践落地也为网络的发展注入了新的活力。我们很高兴能够和思博伦一起,借助盛科的最新芯片平台,展示面向5G的网络互联关键技术创新,也期待这些技术能够在不久的将来,为5G业务的部署与发展贡献力量。”
测试采用思博伦Spirent TestCenter网络性能测试仪,配以目前业界密度最高的DX3-100GQ-T12多速率测试模块。DX3-100GQ-T12五速率测试模块,单槽位可支持12个100G或40G端口,或24个50G端口,或48个25G或10G端口,支持BASE-R FEC、RS-FEC、Auto-negotiation、Link Training 等关键接口特性,支持包括传统路由/交换/接入协议和新的OpenFlow、分段路由等SDN技术测试,能够对高密度路由器、交换机和移动承载网络产品进行全面测试。
Spirent TestCenter N4U机箱
业界密度最高的DX3-100GQ-T12多速率测试模块
思博伦通信大中华区销售总监马林表示:“中国在第五代移动通信的投入上目前领先于全球,所以在中国我们率先看到5G网络相关的技术和方案获得进展和突破。思博伦通信在5G相关的承载网技术测试、空口技术测试、核心网技术测试等方面,都投入大量研发资源,并已经推出对应的测试解决方案。本次和盛科网络的联合测试是思博伦通信在5G承载网络测试上的一次非常有意义的实践,思博伦愿意与包括芯片厂商、设备厂商和运营商一起,推动5G网络的发展。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。