火车站、地铁站、客运站、公交站,作为城市公共交通的枢纽,属于人员密集、管理难度大的地方,部署再多的警力,往往都是收效甚微;一旦发生暴力事件,只能凭借公安干警的应急调度完成治安管理工作,但及时性又无法保证。
作为旅游城市,昆明发展迅速,城市公共交通更是大力建设,昆明已规划至2019年,开通6条地铁线路;其中地铁3号线于2010年启动建设,于2017年8月30日正式开通,开通三天日均客流即达到10万人/天,为了应对如此大的客流量,昆明地铁3号线采用了“全覆盖”视频监控,结合合理的警力部署,大大提升了3号线管理效率。
昆明3号线采用了华为轨道交通云监控解决方案,从IPC到交换机,再到平台、存储,华为为昆明3号线提供了端到端的轨道交通监控解决方案;而且考虑到地铁应用环境的特殊性,华为轨道交通云监控解决方案在系统稳定性方面,提出了“三重云化”的概念,极大的提升了整个视频监控系统的稳定性及安全性。
昆明地铁3号线CCTV云监控方案设计
昆明地铁3号线闭路电视监控系统的设计主要由车站、车辆段/停车场、线网控制中心、放马桥临时控制中心组成。系统整体架构采用分布式云监控进行分层设计,即控制中心(包含临时控制中心)——车站/停车场/车辆段两层部署结构。车站/停车场/车辆段为下级域,可以独立运行,自主管理本地视频监控资源;控制中心/备用控制中心为上级域,可以随意任意浏览、调阅、控制车站/停车场/车辆段等下级域的视频监控资源。通过分布式云化部署,在车站/停车场/车辆段的摄像机只需要接入到本站的云监控资源池,媒体流由云监控资源池实现转发及存储实现可云化弹性部署。其整体结构图如下:
华为地铁分布式云监控解决方案
华为轨道交通云监控解决方案基于IP网络和视频监控业务特性,推出VCN3000系列视频云节点设备。该设备作为云监控的基本单元,通过云计算、云存储技术应用,将网络中多台节点设备高度紧密组合构成单一、专门用于海量视频监控数据存储的视频云系统,通过云化调度算法实现视频云的三重云化特性,打造业界最高的安全可靠性(99.999%),真正实现监控业务端到端云化管理,为轨道交通行业提供高可靠、高可用性、高伸缩、易扩展的端到端视频云解决方案。
云一:设备之间云化
多个视频云节点之间实现动态负载均衡,任何一台设备出故障,其承载业务将自动并发迁移至其它所有服务正常的视频云节点,保证视频监控全业务不间断(与传统监控平台的N+1集群和N+M备份机制相比核心优势为:无需增加备机,业务迁移为并发机制,效率为N+1集群机制的N倍,云化调度实现了视频业务、计算资源和存储资源的资源池化统一调度,所有业务指令的处理效率都大大提升)。
云二:硬盘RAID组之间云化
单个视频云节点内部多个RAID组之间可以实现动态负载均衡,任何一个RAID组出现故障,其承载业务将自动迁移至其它健康的RAID组,保证视频全业务不间断(传统监控平台无法实现视频业务在RAID组间动态迁移)。
云三:RAID组内多块硬盘的云化
通过Safevideo专利实现底层数据管理,每个RAID组内硬盘之间可以实现云化,同时损坏多块硬盘导致RAID组失效后,视频录像仍然可读,最大程度的满足录像数据安全(传统RAID技术,RAID5可以实现1块硬盘损坏后,数据可读,多块硬盘损坏后整个RAID组的硬盘数据全部丢失)。
随着地铁视频监控迈向高清化时代,存储架构也向更加容易维护的分布式云监控模式转变;云监控不仅支持在线扩容,而且基于良好的平台开放性,能够保障系统互联互通,共享视频与图像数据。截止目前,华为轨道交通云监控解决方案服务于全国18条地铁线路,为多个城市公共交通安全保驾护航,实现24小时无死角全方位监控。
好文章,需要你的鼓励
UniR(Universal Reasoner)是一种创新的推理增强方法,可为冻结的大语言模型提供即插即用的推理能力。由韩国科学技术院研究团队开发,该方法将推理能力分解为独立的轻量级模块,无需改变主模型结构。UniR的核心优势在于高效训练(仅更新小型推理模块)、出色的模型间迁移能力(小模型可指导大模型)以及模块组合能力(多个专用模块可通过logits相加组合使用)。在数学推理和翻译测试中,UniR显著超越现有微调方法,展示了轻量级模块如何有效增强大语言模型的推理能力。
Nebius团队开发了SWE-rebench,一个自动化管道用于从GitHub收集软件工程任务并进行去污染评估。该系统解决了两大挑战:高质量训练数据稀缺和评估基准容易被污染。通过四阶段处理(初步收集、自动安装配置、执行验证和质量评估),SWE-rebench构建了包含超过21,000个Python交互式任务的数据集,并提供持续更新的评估基准。研究发现部分语言模型在传统基准上的表现可能被污染效应夸大,而DeepSeek模型在开源模型中表现最为稳健。
这项研究提出了JQL(发音为"Jackal"),一种通过多语言方法提升大型语言模型预训练数据质量的创新系统。研究团队从拉马尔研究所等机构通过四阶段方法解决了多语言数据筛选的难题:先由人类评估内容教育价值创建基准数据,然后评估大型语言模型作为"评判者"的能力,接着将这些能力提炼到轻量级评估器中,最后应用于大规模数据筛选。实验表明,JQL在35种语言上显著优于现有方法,甚至能泛化到未见过的语言如阿拉伯语和中文,为多语言AI发展提供了高效可靠的数据筛选方案。
浙江大学和西湖大学研究团队开发的Styl3R实现了艺术风格化3D重建的重大突破,能在不到一秒内从少量未标定照片和任意风格图像创建具有多视角一致性的3D艺术场景。通过创新的双分支网络架构将结构建模与外观着色分离,系统不仅保持了原始场景结构,还准确捕捉了参考风格特征。与现有方法相比,Styl3R在处理速度和视觉质量上均显著领先,为创意内容制作开辟了全新可能。