火车站、地铁站、客运站、公交站,作为城市公共交通的枢纽,属于人员密集、管理难度大的地方,部署再多的警力,往往都是收效甚微;一旦发生暴力事件,只能凭借公安干警的应急调度完成治安管理工作,但及时性又无法保证。
作为旅游城市,昆明发展迅速,城市公共交通更是大力建设,昆明已规划至2019年,开通6条地铁线路;其中地铁3号线于2010年启动建设,于2017年8月30日正式开通,开通三天日均客流即达到10万人/天,为了应对如此大的客流量,昆明地铁3号线采用了“全覆盖”视频监控,结合合理的警力部署,大大提升了3号线管理效率。
昆明3号线采用了华为轨道交通云监控解决方案,从IPC到交换机,再到平台、存储,华为为昆明3号线提供了端到端的轨道交通监控解决方案;而且考虑到地铁应用环境的特殊性,华为轨道交通云监控解决方案在系统稳定性方面,提出了“三重云化”的概念,极大的提升了整个视频监控系统的稳定性及安全性。
昆明地铁3号线CCTV云监控方案设计
昆明地铁3号线闭路电视监控系统的设计主要由车站、车辆段/停车场、线网控制中心、放马桥临时控制中心组成。系统整体架构采用分布式云监控进行分层设计,即控制中心(包含临时控制中心)——车站/停车场/车辆段两层部署结构。车站/停车场/车辆段为下级域,可以独立运行,自主管理本地视频监控资源;控制中心/备用控制中心为上级域,可以随意任意浏览、调阅、控制车站/停车场/车辆段等下级域的视频监控资源。通过分布式云化部署,在车站/停车场/车辆段的摄像机只需要接入到本站的云监控资源池,媒体流由云监控资源池实现转发及存储实现可云化弹性部署。其整体结构图如下:
华为地铁分布式云监控解决方案
华为轨道交通云监控解决方案基于IP网络和视频监控业务特性,推出VCN3000系列视频云节点设备。该设备作为云监控的基本单元,通过云计算、云存储技术应用,将网络中多台节点设备高度紧密组合构成单一、专门用于海量视频监控数据存储的视频云系统,通过云化调度算法实现视频云的三重云化特性,打造业界最高的安全可靠性(99.999%),真正实现监控业务端到端云化管理,为轨道交通行业提供高可靠、高可用性、高伸缩、易扩展的端到端视频云解决方案。
云一:设备之间云化
多个视频云节点之间实现动态负载均衡,任何一台设备出故障,其承载业务将自动并发迁移至其它所有服务正常的视频云节点,保证视频监控全业务不间断(与传统监控平台的N+1集群和N+M备份机制相比核心优势为:无需增加备机,业务迁移为并发机制,效率为N+1集群机制的N倍,云化调度实现了视频业务、计算资源和存储资源的资源池化统一调度,所有业务指令的处理效率都大大提升)。
云二:硬盘RAID组之间云化
单个视频云节点内部多个RAID组之间可以实现动态负载均衡,任何一个RAID组出现故障,其承载业务将自动迁移至其它健康的RAID组,保证视频全业务不间断(传统监控平台无法实现视频业务在RAID组间动态迁移)。
云三:RAID组内多块硬盘的云化
通过Safevideo专利实现底层数据管理,每个RAID组内硬盘之间可以实现云化,同时损坏多块硬盘导致RAID组失效后,视频录像仍然可读,最大程度的满足录像数据安全(传统RAID技术,RAID5可以实现1块硬盘损坏后,数据可读,多块硬盘损坏后整个RAID组的硬盘数据全部丢失)。
随着地铁视频监控迈向高清化时代,存储架构也向更加容易维护的分布式云监控模式转变;云监控不仅支持在线扩容,而且基于良好的平台开放性,能够保障系统互联互通,共享视频与图像数据。截止目前,华为轨道交通云监控解决方案服务于全国18条地铁线路,为多个城市公共交通安全保驾护航,实现24小时无死角全方位监控。
好文章,需要你的鼓励
瑞典央行与金融机构及国家安全部门深化合作,共同应对网络威胁。今年5月,瑞典遭遇大规模分布式拒绝服务攻击,政府和金融机构受到严重冲击。总理克里斯特松承诺增加资金支持,建立更强大的公私合作伙伴关系。央行将举办第二届在线网络安全挑战峰会,鼓励金融机构提升网络安全能力。瑞典金融协会敦促建立危机管理机制,与国家网络安全中心等机构协调配合。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
工作压力源于大脑储存混乱而非系统。本文介绍5个ChatGPT提示词,帮你将工作压力转化为结构化行动:优先级排序任务清单、快速撰写专业邮件回复、从冗长文档中提取关键信息、生成问题解决方案、高效准备会议内容。通过系统化处理工作事务,将分散的精力转为专注执行,让大脑专注于决策而非重复劳动。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。