专注于为区块链和人工智能应用构建全同态加密(FHE)技术以保护隐私的开源密码学初创公司Zama SAS今日宣布,已完成5700万美元早期融资。
这轮B轮融资由Blockchange Ventures和Pantera Capital共同领投,使Zama的总融资额超过1.5亿美元,公司估值超过10亿美元。距离该公司上次融资7300万美元仅过去一年多时间。
伴随此次融资,Zama正式推出其机密区块链协议(CBP)的公共测试网,允许开发者开始构建能够通过该公司专用虚拟机在以太坊区块链上进行私密通信的应用程序。
Zama最初是全同态加密(FHE)领域的先驱,这是一种能够对加密数据进行计算的新颖加密技术,使组织能够在不损害数据实用性的前提下保护消费者数据。
传统上,加密技术用于保护存储的数据或在端点之间传输的数据。然而,当数据被中央处理器或图形处理器主动处理时,应用加密可能面临挑战。全同态加密技术解决了这一问题。
区块链技术通过将交易记录到受密码学确定性保护的公共账本上,使得公开验证请求是否按照预定逻辑执行以及交易是否发生成为可能。然而,这需要向所有人披露交易和数据,保持信息私密性会使验证信息变得不可能。
Zama联合创始人兼首席执行官Rand Hindi表示:"没有机密性,区块链就无法实现大规模采用。"
Hindi说,互联网最初使用零加密的超文本协议HTTP,然后发展到使用HTTPS对传输中的数据进行加密。他表示,下一个自然步骤是为每个应用程序从头到尾默认启用完全加密——该公司称之为HTTPZ。
Hindi解释道:"然而,直到最近,FHE仍然太慢,在支持的应用程序方面太有限,对开发者来说也太难使用。这正是我们Zama团队在过去五年中一直在解决的问题。"
使用该公司的CBP,开发者可以在以太坊区块链上使用FHE,采用Solidity和Python等常见编程语言,工作速度比五年前快100倍。该技术已经具备后量子特性,意味着没有已知的量子计算算法能够破解它。
该协议的示例用例包括金融领域的信用卡支付、汇款或银行业务,金融资产代币化,区块链上的债券和股票交易,完全加密的代币交换等。许多这些用例以前需要使用私有区块链来保护隐私和机密性。
其他示例包括链上身份和治理,或为AI创建数据市场。通过FHE,用户可以选择性地与希望使用其数据训练AI模型的公司分享和出售数据。AI模型也可以在加密状态下进行训练,结果被解密后可用于创建版税模型,确保用户拥有数据收入来源,而不是仅出售一次就被永久使用。
Zama表示,预计其技术在未来五年内可扩展性将提高100倍。使用GPU使Zama的协议能够扩展到每秒数百笔交易,该公司正在开发专用硬件芯片以提升FHE性能,最终目标是达到每秒数万笔交易。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。