在工业领域中,IT(Information Technology)信息技术与OT(Operation Technology )操作技术之间天然存在着种种差异,两者都有各自的目标,沿着不同的路径发展,并各有各的生态体系。因此,长期以来IT与OT之间都是相互隔离的状态。但在今天工业信息化与数字化的发展趋势下,IT与OT之间的这种鸿沟显然愈发阻碍了制造业向未来挺进的步伐。
随着工业信息化建设的不断深入,在制造业中以往不同协议、不同厂家等异构产品的整合及管理问题更加凸显,这也一直困扰工业和制造业的管理者。而在IT领域中,统一管理的概念及产品早已成熟,如果将IT管理理念引入OT管理当中将大大提升其生产效率。
因此,近年来OT开始逐渐拥抱IT,IT也开始更多的融入到各种工业环境当中,而如何将IT与OT进行更加有效的融合,已经成为工业数字化转型的基础和关键所在。
众所周知,随着工业互联网、智能制造和大数据的出现及运用,IT与OT之间的融合也愈发紧密,但假如在合适的时机缺乏合适的信息,也会导致决策错误和产生不可靠的行动。换句话说,面对工业生产环境,对于IT与OT来说都将面临更加苛刻的要求,因此两者融合也将是一个分阶段的实施过程。
而随着工业4.0的来临,越来越多的企业开始将IT技术引入到OT技术之中。以纺织制造企业为例,瑞士欧瑞康纺织集团(原苏拉集团)就是一家全球科技集团,也是纺织机械全面解决方案的世界领导者,其设备与服务涵盖了整个纱线生产(天然纤维和人造纤维)以及非制造产品生产领域。
欧瑞康信息部IT经理韩志军就曾表示,“工业IT方案永远都是朝着更加安全可靠、更高价值,同时兼顾灵活可变而努力。”这看起来与传统IT场景的需求有一定差别。
另外,在上云方面,欧瑞康也有自己的打算,将建立起公有云+私有云的混合云方式,以及ERP等企业应用平台的融合,这些都将依赖IT与OT的有效融合,才能实现对企业总体数据的协作与共享,并从生产数据中挖掘出更大的价值。
同时,基于内外网络的商业数据保护,也是工业制造的一个重要基石,这也是工业IT与传统IT的一个很大不同。在工业IT中,不仅要保障网络的可靠连接,更要对网络进行合理划分,保证其安全性,其次才是网络的灵活性需求,这也是IT在工业制造领域中的主要需求与方向。
而随着OT与IT的融合度越来越高,工业数据的价值将得到进一步的释放,未来制造类企业的内部平台将逐渐整合,外部数据会不断向云端迁移,而内外部数据的统一管理与协作能力,将成为未来工业数字化转型的重要技术指标。
可以想见,随着工业化的不断推进,越来越多的人工操作将被软件或机器所替代,工业自动化程度也将得到大幅提升,而这都是在IT与OT的不断深化融合中得以实现的。
好文章,需要你的鼓励
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
人工智能初创公司aiOla推出基于流匹配训练技术的语音AI模型Drax,挑战OpenAI和阿里巴巴等巨头。该模型重新定义语音算法训练方式,能在嘈杂环境中准确识别语音,兼顾速度与准确性。相比OpenAI的Whisper和阿里巴巴Qwen2,Drax采用并行流处理技术,速度提升32倍,词错误率仅7.4%。该模型已在GitHub开源,提供三种规模版本。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。