在美国各地数以百万计的员工首次尝试居家办公的情况下,许多组织已开始重新审视零信任安全战略。趋势和技术的融合,再加上对仅仅依靠外围防御实现安全保护所带来风险的新认识,都意味着让零信任成为主流的时机已经成熟。
传统上,IT 安全基于外围防御模型,例如中世纪由护城河环绕的城堡、修建有围墙的城市。这种理念的目的是把入侵者挡到共享空间之外,同时假设围墙内的人都是可以信任的,可以在围墙内自由漫游(或多或少)。
由于目前网络必须容纳的互联设备数量激增,外围安全战略多年来一直处于困境之中。近期发生的一些事件进一步突显了外围防御的局限性,因为 IT 部门在应对突然增多且都是首次使用不受 IT 控制的家用计算机来接入网络的远程工作人员时,显得异常艰难。
零信任假设任何人都不能信任,这颠覆了传统的网络安全。虽然这听起来有些苛刻,但只要能做到,每个人的工作都会变得更轻松。
想要做到这一点并非易事。若要让“零信任”发挥作用,采用者需要在整个组织范围内作出承诺。他们需要对所有 IT 和数据资产进行分类,并根据角色分配访问权限。在这一过程中,他们需要锁定一些常见漏洞。举例来说,绝对不允许 Web 服务器直接与其他 Web 服务器通信,而只能通过指定的端口与应用服务器进行通信。
数据也需要进行分类。某些信息,例如公司团队的垒球时间安排表,可能根本不需要任何保护。商业秘密和其他专有数据则需要受限用户类别进行多级身份验证。
需要对网络进行分段,以禁止横向移动,而横向移动长期以来一直都是大规模数据泄露的元凶。当工作负载在虚拟机和云服务器之间移动时,必须彼此隔离并受到保护。直到最近,管理这样的环境也一直都是一项艰巨任务,不过形势正在发生变化。
第一个重要的发展是,多重身份验证 (MFA) 最终成为了主流:LastPass 披露的数据显示,去年的业务采用率增长至 57%(之前一年为 45%)。MFA 使用二级甚至是三级身份验证,其范围涵盖了从硬件设备到发送给手机的短信代码。尽管它还不够完善,但相比很久以前就已失去作用的基本密码安全机制而言,它是一个巨大进步。
一项重要的技术发展是软件定义网络 (SDN) 的成熟,其中网络管理从物理防火墙和交换机转移到软件。在 SDN 网络中,由于分段是由软件定义并由策略管理的,因此实现网络分段要容易得多。Verizon 近期的一项调研发现,57% 的组织希望在两年内实施 SDN,而目前只有 15% 的组织希望采用 SDN。
第三个重要发展是健全的身份和访问管理 (IAM) 系统。这些软件平台通常作为服务交付,会创建联合身份,而这些身份会随用户在整个企业网络和云应用中传播。IAM 会强制执行组织定义的身份验证策略。用户登录一次即可访问大多数的应用,无需跟踪多个登录名和密码。
零信任并不容易实现。上面提到的想法可以帮助您的组织朝着正确的方向迈进,但是如果您不能在一个月甚至一个季度内革新战略,就不要挑战自己的极限。Silicon Angle 报道称,Lexmark 用了两年的时间围绕零信任原则来全面革新服务于 8,500个用户的网络。
这一过程需要对公司的所有数据和 IT 资产进行分类,还需要封闭一些漏洞,比如个人计算机上的默认管理权限。首席信息安全官 (CISO) Bryan Willett 花了很多时间向持怀疑态度的用户解释这一决定,但最终的结果是值得的。现在,他们可以更轻松地获取所需数据,而且由第三方服务机构评出的公司安全准备程度得分也大大提高。
当组织针对可能出现的业务中断做准备时,零信任模型会让他们更加放心。在 Gartner 魔力象限当中, IBM IAM 连续三年占据领导者地位。访问 “IBM 安全专题”,了解更多企业安全策略与实践案例。
Gillin + Laberis 合作伙伴
Paul Gillin曾撰写过有关社交和数字营销主题的 5 本书和 300 多篇文章,目前是一名全职专栏作家。
好文章,需要你的鼓励
近期有观点认为,大规模使用生成式AI和大语言模型会增强人类左脑的逻辑分析能力,同时削弱右脑的创造力,导致人类社会逐渐成为左脑主导的群体。但研究表明,左右脑功能分工理论缺乏科学依据,大脑两半球在创造性和逻辑性任务中都会协同工作。此外,AI不仅能辅助逻辑思维,同样可用于诗歌创作、图像生成等创意任务。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软全球AI巡展在迪拜举行,宣布启动Microsoft Elevate UAE项目,计划为超过25万名学生和教育工作者以及5.5万名联邦政府员工提供AI技能培训。该项目是微软152亿美元投资计划的一部分,旨在加强AI基础设施建设,培养本地人才能力。微软还将与G42和JAHIZ平台合作,为联邦公务员提供技术培训,支持阿联酋成为AI领域的区域和全球领导者。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。