周一,一家专注于模型上下文协议(MCP)安全的初创公司Runlayer正式从隐身模式中走出,获得了来自Khosla Ventures的Keith Rabois和Felicis的1100万美元种子轮融资。
这家公司由三度创业的Andrew Berman创立,他此前曾创办了婴儿监护器制造商Nanit,以及在2024年被Zapier收购的AI视频会议工具Vowel。
自Runlayer四个月前以隐身模式推出产品以来,已经签约了数十家客户,包括Gusto、Rippling、dbt Labs、Instacart、Opendoor和Ramp等八家独角兽公司或上市公司。此外,据Berman向TechCrunch透露,公司还成功邀请到了MCP协议的首席创建者David Soria Parra作为天使投资人和顾问。
Parra的团队在Anthropic于2024年11月将该协议作为开源项目发布。MCP此后已成为允许智能体连接其独立工作所需数据和系统的事实标准。该协议允许智能体在无人监督的情况下访问数据、移动数据、修改数据并执行业务流程。
该协议现已得到所有主要模型制造商的支持,包括OpenAI、微软、亚马逊云服务、谷歌,以及数千家技术和企业公司;仅举几例:Atlassian、Asana、Stripe、Block,还有从银行到消费品制造商等各行各业的公司。
Runlayer首席执行官Berman对TechCrunch表示:"每个人都在谈论AI,但AI的实际价值完全取决于它能够访问的工具和资源。"
问题是,MCP协议本身并未包含太多现成的安全功能,因此许多MCP实现已被发现在多个方面存在漏洞。
最典型的例子可能是GitHub和Asana。今年5月,Invariant Labs的研究人员在MCP服务器中发现了一个提示注入漏洞,使他们能够从私有GitHub仓库中获取数据(这些本不应该向公众开放的仓库)。Asana在6月发现并修复了其MCP服务器中的一个漏洞,该漏洞可能会暴露客户数据。此后,在常见MCP服务器设置中又发现了许多其他类型的攻击。
正如预期的那样,此类安全问题催生了众多MCP安全产品,包括来自CloudFlare、Docker和Wiz等知名公司的产品,以及众多专注于更具体产品的初创公司。
目前最常见的MCP安全产品类型是网关,本质上是一个用于识别智能体并控制其对应用程序访问的安全层。
Runlayer计划通过成为一个集网关与威胁检测、可观测性、企业开发和详细权限管理等功能于一体的全方位安全工具,在这个拥挤的市场中脱颖而出。威胁检测功能分析每个MCP请求;可观测性功能监控IT部门许可的所有MCP服务器上的智能体活动;企业开发功能让IT部门为企业用户构建定制AI自动化;详细权限管理与Okta和Entra等现有身份提供商协作。
与开源Obot等其他竞争对手类似,Runlayer为业务用户提供了一个类似Okta的目录,展示IT部门允许智能体访问的预审核MCP服务器。Runlayer将智能体的应用程序权限与人类用户的权限相匹配。例如,一些人可能对财务系统只有只读访问权限,一些人有写入权限(修改数据的能力),而其他人则完全没有访问权限。
Berman认为Runlayer不仅在产品广度上,更在团队经验上脱颖而出。他创立这家初创公司是因为在将Vowel出售给Zapier后,他成为了Zapier的AI总监,并构建了首批MCP服务器之一,当时与OpenAI和Anthropic密切合作。
"我们看到协议存在什么问题?首先是安全风险,因为它被采用得太快了,"他说。在可观测性和审计等领域存在"盲点",这使得企业向用户推广变得风险重重。
因此在8月,"我们辞去了工作。我们签下了规范创建者David Soria Parra,在四个月内,我们签约了八家独角兽公司,"他和来自Zapier的联合创始人Tal Peretz和Vitor Balocco如是说。
据Berman介绍,公司的其他顾问和投资者还包括Cursor安全负责人Travis McPeak,以及Neon创始人Nikita Shamgunov。
Q&A
Q1:MCP协议是什么?它为什么重要?
A:MCP(模型上下文协议)是由Anthropic于2024年11月发布的开源协议,现已成为允许智能体连接其独立工作所需数据和系统的事实标准。该协议允许智能体在无人监督的情况下访问、移动、修改数据并执行业务流程,现已得到OpenAI、微软、谷歌等主要模型制造商支持。
Q2:MCP协议存在哪些安全问题?
A:MCP协议本身并未包含太多现成的安全功能,因此许多MCP实现存在多种漏洞。最典型的例子是GitHub和Asana,前者被发现存在提示注入漏洞,可能泄露私有仓库数据;后者在6月修复了可能暴露客户数据的漏洞。这些安全问题使得企业推广智能体应用面临风险。
Q3:Runlayer如何解决MCP安全问题?
A:Runlayer提供全方位MCP安全解决方案,结合网关功能与威胁检测、可观测性、企业开发和详细权限管理。它分析每个MCP请求,监控所有智能体活动,支持定制AI自动化,并与Okta等身份提供商协作,将智能体权限与人类用户权限相匹配,为企业提供安全可控的智能体部署环境。
好文章,需要你的鼓励
今年是AI智能体的爆发年。聊天机器人正演进为能代表用户执行任务的自主智能体,企业持续投资智能体平台。调研显示,超半数高管表示其组织已在使用AI智能体,88%在智能体上投入过半AI预算的公司已从至少一个用例中获得投资回报。Gartner预测,到2026年40%的企业软件应用将包含智能体AI,2035年智能体AI可能驱动约30%的企业应用软件收入。企业开始将AI智能体视为员工,建立招聘培训体系。
波士顿大学团队发现当今多模态AI存在严重"偏科"问题:面对冲突的文字、视觉、听觉信息时,AI过分依赖文字而忽视真实感官内容。研究团队构建MMA-Bench测试平台,通过创造视听冲突场景暴露了主流AI模型的脆弱性,并提出模态对齐调优方法,将模型准确率从25%提升至80%,为构建更可靠的多模态AI系统提供重要突破。
谷歌的Nano Banana Pro AI模型生成的图像逼真度令人震惊,其关键在于完美模拟了手机相机的拍照特征。这些AI生成的图像具备手机拍照的典型特点:明亮平坦的曝光、较大的景深范围、略显粗糙的细节处理,甚至包含噪点。该模型还能自动添加符合情境的细节元素,如房产照片的水印等,使图像更加真实可信。这种技术进步意味着辨别AI生成内容变得更加困难。
UC伯克利研究团队发现了一种名为"双重话语"的AI攻击方法,能够通过简单的词汇替换绕过当前所有主流聊天机器人的安全防护。攻击者只需用无害词汇替换危险词汇,就能让AI在不知不觉中提供危险信息。研究揭示了现有AI安全机制的根本缺陷,迫切需要开发新的防护策略来应对这一威胁。