美国网络安全与基础设施安全局(CISA)发布了一份恶意软件分析报告,针对"ToolShell"攻击提供了入侵指标和Sigma规则,该攻击专门针对特定版本的微软SharePoint服务器。
"网络威胁行为者将CVE-2025-49704和CVE-2025-49706漏洞串联(这个漏洞利用链被公开称为'ToolShell'),以获得对本地SharePoint服务器的未经授权访问,"该机构在报告公告中解释道。
CISA分析了六个文件,包括两个动态链接库(.DLL)文件、一个加密密钥窃取器和三个网络外壳程序。网络威胁行为者可以利用这些恶意软件窃取加密密钥,并执行Base64编码的PowerShell命令来获取主机系统指纹并外泄数据。
SharePoint服务器中的关键漏洞CVE-2025-53770被评为"严重"级别,CVSS评分为9.8分。该漏洞基于早期的"中等"严重程度漏洞CVE-2025-49706构建。微软以为已经在上个月修补了这个漏洞,但后来发现它作为零日漏洞被积极利用,攻击了一些知名目标。
该漏洞与其他漏洞链接形成了名为"Toolshell"的漏洞利用链,允许通过不可信数据反序列化进行远程代码执行。已知利用该漏洞的组织包括Linen Typhoon(又名Emissary Panda、APT27)、Violet Typhoon(又名Zirconium、Judgment Panda、APT31)和Storm-2603。
截至7月23日,受害者数量已超过400个,包括美国能源部(DOE)。美国能源部向《The Register》确认,其国家核安全管理局(NNSA)已因该漏洞遭到入侵,但声称"影响很小"。
攻击的时机让至少一名安全研究人员得出结论,认为该漏洞是在5月份作为Pwn2Own利用竞赛的一部分进行私下披露后被泄露的。趋势科技零日计划威胁感知负责人达斯汀·蔡尔兹上个月告诉我们:"这里某处发生了泄露。"
对于担心可能卷入所有这些SharePoint安全问题的用户,CISA的恶意软件分析报告可以提供一些保证。
除了CVE-2025-53770之外,该报告还涵盖了其他三个相关的SharePoint漏洞,这些漏洞用于形成"ToolShell"漏洞利用链,以及一个名为"SharpyShell"的"新型隐蔽网络外壳",它通过简单的GET请求提取和外泄加密秘密。最重要的是,报告附带了入侵指标和一套Sigma格式的检测规则,Sigma是用于检测和日志系统的跨供应商开源标准。
这些规则允许用户分析日志,寻找通过四个已知漏洞中任何一个进行利用的证据:CVE-2025-49704(CWE-94:代码注入);CVE-2025-49706(CWE-287:身份验证不当);CVE-2025-53770(CWE-502:可信数据反序列化);以及CVE-2025-53771(CWE-287:身份验证不当)。
但是,寻求实施这些规则的用户建议在部署前进行测试。CISA警告:"确保您的EDR/SIEM(端点检测与响应/安全信息与事件管理)实例有足够的内存来运行这些基于AND/OR条件的查询,这些查询可能比常规Sigma规则查询运行时间更长。"
完整报告以及入侵指标和Sigma规则可在CISA网站上获取。
Q&A
Q1:ToolShell攻击是什么?它如何影响SharePoint服务器?
A:ToolShell是一个漏洞利用链,网络威胁行为者将CVE-2025-49704和CVE-2025-49706漏洞串联,获得对本地SharePoint服务器的未经授权访问。攻击者可以利用这些恶意软件窃取加密密钥,执行PowerShell命令获取系统信息并外泄数据。
Q2:哪些组织使用了SharePoint漏洞进行攻击?
A:已知利用这些SharePoint漏洞的组织包括Linen Typhoon(又名Emissary Panda、APT27)、Violet Typhoon(又名Zirconium、Judgment Panda、APT31)和Storm-2603。这些都是知名的高级持续性威胁(APT)组织。
Q3:CISA发布的恶意软件分析报告包含什么内容?
A:CISA的报告分析了六个恶意文件,包括两个动态链接库文件、一个加密密钥窃取器和三个网络外壳程序。报告提供了入侵指标和Sigma格式的检测规则,帮助用户分析日志并检测四个相关漏洞的利用证据。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。