近日,agentic 安全运营初创公司 Exaforce Inc. 宣布完成一轮 7500 万美元的新融资,用于推进其 agentic SOC 平台的发展。
Exaforce 成立于 2023 年,正在开发一个 agentic 安全运营中心平台,该平台将人工智能代理“ Exabots ”与先进的数据探索相结合。其目标是让企业的人力安全运营工作量降低十倍,同时显著提升安全防护效果。
该平台旨在通过一种将大语言模型与语义及行为模型融合进 AI 引擎的方式来解决安全和运营中的诸多难题。公司表示,这种方法能够为安全运营中心带来更高的准确度、重复性和生产力。
平台力求帮助那些需要 SOC 解决方案的企业,该方案不仅能更有效且持续地应对威胁,能更迅速地检测和调查问题,还能在无需增加人手的情况下以更低成本按需扩展防御能力。
Exaforce 指出,SOC 分析师面临着大量警报,其中许多为误报。这使得他们不得不处理庞大的数据集以及日志拼接、用户验证和工单管理等繁琐的手工任务,从而消耗大量资源并延缓响应速度。此外,在云环境下,检测工程师常常难以覆盖所有威胁,因为云平台原生的威胁检测能力普遍不足,而传统的安全信息与事件管理系统也无法提供充分覆盖。
为应对这些挑战,Exaforce 认为,针对 SOC 的理想 AI 解决方案必须能分析海量日志、云遥测数据和威胁信息,以做出迅速且高风险的决策。仅依赖大语言模型的 agentic 解决方案一次只能审核一小部分数据,这会导致问题分析不全面、推理结果不可靠且易产生虚假信息。
Exaforce 通过其多模型 AI 引擎突破了这一技术瓶颈。该引擎为安全和运营需求量身定制,将语义数据模型、统计模型和行为模型相结合,从原始数据中提取关键见解、行为及关联关系,然后利用知识模型进行更深层次的分析。
多模型的结构化应用提升了 SOC 数据的质量,随后将这些数据输入到大语言模型中,实现对全量数据的端到端推理。该方法避免了单一大语言模型可能出现的盲区,从而提供了更准确、可重复的结果。
Khosla Ventures、Mayfield 和 Thomvest Ventures Inc. 联合领投了本轮 A 轮融资。
Mayfield 管理合伙人 Navin Chaddha 表示:“令我们兴奋的是,Exaforce 正在重新构想开发 AI 队友这一巨大机遇,以分担复杂任务从而提高人类的生产力和工作效率,而他们首选的正是人才和技能相对短缺的 SOC 市场。”
图片:Exaforce
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。