互联网工程任务组 (IETF) 已成立一个工作组,旨在制定一个标准,让内容创作者能够告知 AI 开发者是否允许使用他们的作品。
这个名为 AI 偏好工作组 (AIPREF) 的组织被要求开发两个方面的内容:
首先是制定一个通用词汇表,用于表达作者和发布者对其内容用于 AI 训练及相关任务的偏好;
其次是开发将这些词汇表附加到互联网内容的方法,可以通过将其嵌入内容中,或者采用类似 robots.txt 的格式,并建立一个标准机制来协调多个偏好表达。
AIPREF 章程建议通过"在内容元数据中包含偏好,或通过传递内容的协议发送偏好信号"来实现这些目标。
AIPREF 联合主席 Mark Nottingham 认为之所以需要这些措施,是因为当前的系统并不能很好地发挥作用。
他认为 robots.txt 文件中的"非标准信号"(这是一个 IETF 标准,用于定义爬虫是否允许访问网络内容的语法)已经失效。
"结果就是,作者和发布者对他们的偏好是否会被遵守失去了信心,只能采取诸如屏蔽 [AI 供应商] IP 地址的措施。"
内容创作者之所以采取 IP 屏蔽措施,是因为主要的模型开发商在抓取互联网内容用于训练 AI 时,并没有征求许可或寻求授权。
OpenAI 目前正在游说推动版权改革,希望能够在不付费的情况下抓取更多内容。
版权持有者正在通过起诉那些使用版权材料构建模型的机构进行反击,同时也在签署许可协议,让 AI 公司付费访问内容。
AI 爬虫还给发布者带来了经济负担。维基媒体基金会最近抱怨说,用于处理图像检索请求的带宽在过去一年增加了 50%,主要是因为 AI 爬虫下载资料。
IETF 并不关心这些法律和运营问题:它只想构建技术,让人们能够表达他们的偏好,希望爬虫运营者能够接受并只获取创作者愿意提供给 AI 使用的内容。
为了推进这项工作,AIPREF 在三月中旬的 IETF 122 会议上召开了会议,并已经制定了两个草案。一个提出了"用于自动处理的简短使用偏好字符串",建议这些字符串可以用在 robots.txt 文件或 HTTP 头字段中。
另一个来自 Common Crawl Foundation 的提案题为"用于 AI 训练的内容偏好表达词汇",同样建议将偏好语法存储在 robots.txt 文件或 HTTP 头字段中,还建议在元标签中使用proposed vocabulary。
AIPREF 本周正在召开会议,尽管一个计划中的会议似乎已被取消。
该工作组给自己设定了 2025 年 8 月的截止日期来提交提案。参与者似乎都知道这是一个紧迫的期限,因此该组织需要加快行动。
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。