互联网工程任务组 (IETF) 已成立一个工作组,旨在制定一个标准,让内容创作者能够告知 AI 开发者是否允许使用他们的作品。
这个名为 AI 偏好工作组 (AIPREF) 的组织被要求开发两个方面的内容:
首先是制定一个通用词汇表,用于表达作者和发布者对其内容用于 AI 训练及相关任务的偏好;
其次是开发将这些词汇表附加到互联网内容的方法,可以通过将其嵌入内容中,或者采用类似 robots.txt 的格式,并建立一个标准机制来协调多个偏好表达。
AIPREF 章程建议通过"在内容元数据中包含偏好,或通过传递内容的协议发送偏好信号"来实现这些目标。
AIPREF 联合主席 Mark Nottingham 认为之所以需要这些措施,是因为当前的系统并不能很好地发挥作用。
他认为 robots.txt 文件中的"非标准信号"(这是一个 IETF 标准,用于定义爬虫是否允许访问网络内容的语法)已经失效。
"结果就是,作者和发布者对他们的偏好是否会被遵守失去了信心,只能采取诸如屏蔽 [AI 供应商] IP 地址的措施。"
内容创作者之所以采取 IP 屏蔽措施,是因为主要的模型开发商在抓取互联网内容用于训练 AI 时,并没有征求许可或寻求授权。
OpenAI 目前正在游说推动版权改革,希望能够在不付费的情况下抓取更多内容。
版权持有者正在通过起诉那些使用版权材料构建模型的机构进行反击,同时也在签署许可协议,让 AI 公司付费访问内容。
AI 爬虫还给发布者带来了经济负担。维基媒体基金会最近抱怨说,用于处理图像检索请求的带宽在过去一年增加了 50%,主要是因为 AI 爬虫下载资料。
IETF 并不关心这些法律和运营问题:它只想构建技术,让人们能够表达他们的偏好,希望爬虫运营者能够接受并只获取创作者愿意提供给 AI 使用的内容。
为了推进这项工作,AIPREF 在三月中旬的 IETF 122 会议上召开了会议,并已经制定了两个草案。一个提出了"用于自动处理的简短使用偏好字符串",建议这些字符串可以用在 robots.txt 文件或 HTTP 头字段中。
另一个来自 Common Crawl Foundation 的提案题为"用于 AI 训练的内容偏好表达词汇",同样建议将偏好语法存储在 robots.txt 文件或 HTTP 头字段中,还建议在元标签中使用proposed vocabulary。
AIPREF 本周正在召开会议,尽管一个计划中的会议似乎已被取消。
该工作组给自己设定了 2025 年 8 月的截止日期来提交提案。参与者似乎都知道这是一个紧迫的期限,因此该组织需要加快行动。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。