IBM今天的一份新报告发现,2024年数据泄露的平均成本已达到488万美元的历史新高,比 2023年增长10%,因为泄露事件的破坏性越来越大,并进一步提高了对网络团队的需求。
这些数据来自IBM的2024年数据泄露成本年度报告,该报告根据2023年3月至2024年2月期间对全球604个组织经历的真实数据泄露事件分析而成。该研究由Ponemon Institute进行,报告已经连续发布了19年。
除了数据泄露成本平均上升了10%之外,该报告的主要发现还包括,70%的组织报告称,数据泄露造成了重大或非常重大的破坏。
由于业务损失以及泄露后的客户和第三方响应成本推动,数据泄露平均成本不断上升,造成的连带损失只会不断上升。该报告指出,数据泄露的破坏性影响不仅在于会增加成本,还会让恢复时间变得更长,在某些情况下,组织需要100多天才能完全恢复。
很多组织的安全团队在处理攻击方面都人手不足。该报告发现,与去年相比,网络安全人员短缺增加了26%,与安全人员配备充足或缺口不大的公司相比,网络安全人手短缺的公司数据泄露的成本平均高出176万美元。
三分之二的受访企业已经或者正在安全运营中部署人工智能安全服务和相关自动化工具,和去年相比,这是一个显著的转变,也是一个积极的转变。已经使用人工智能安全工具的企业在数据泄露上的成本比那些不使用人工智能的企业平均低220万美元,这是人工智能安全的一个明确卖点。
在成功绕过防御的数据泄露事件中,有40%都涉及数据在多处存储,包括公共云、私有云和本地存储。这些数据泄露的平均成本超过500万美元,识别和遏制需要的时间也最长,达到283天。
报告中的其他发现包括被盗或泄露的凭据成为最常见的初始攻击媒介,在所有泄露事件中占比16%,解决起来也最为耗费时间,通常需要将近10个月。医疗保健、金融服务和技术等关键基础设施行业的泄露成本最高,其中医疗保健行业泄露成本连续14年最高,平均为977万美元。
虽然人们注意到人工智能防御正在迅速部署,但该报告警告说,更广泛地拥抱人工智能会带来更大的风险。
IBM Security 战略和产品设计副总裁 Kevin Skapinetz 表示:“企业陷入了泄露、遏制和后果响应的持续循环中。”“这个循环现在通常包括加强对安全防御的投资并将泄露的成本转嫁给消费者——让安全成为开展业务的新成本。随着生成式人工智能快速渗透进入企业,扩大了攻击面,这些成本很快就会变得不可持续,迫使企业重新评估安全措施和响应策略。未雨绸缪,企业应该投资于新的人工智能驱动的防御措施,并开发所需的技能,以应对生成式人工智能带来的新风险和机遇。”
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。