当前,多数中国企业已部署了广域网解决方案,实现了分支机构和数据中心的连接。然而,随着数字化转型的持续深化,为实现稳定增长、满足严格的监管要求和适应混合环境(如混合云、混合工作方式),中国企业需要重新思考其广域网战略。
混合部署为中国企业的网络团队(尤其是广域网团队)带来了许多新的挑战,这是中国的基础设施和运营(I&O)领导者必须面对的现实(见图1)。
图1:企业网络团队面临的混合环境部署挑战
采用自适应广域网策略,支持不断变化的业务需求
在中国,虽然业务和I&O领导者之间的沟通不够充分,但瞬息万变、日益成熟且不断发展的市场,要求I&O领导者在相对较短的时间内,提供高质量的广域网解决方案来满足不断变化的需求。此外,云采用——特别是混合云的部署,使这一挑战的难度增加。
灵活多变、难以预测的市场需求催生了新的广域网设计准则,即从现有的静态设计转变为自适应设计。为了满足自适应需要,广域网团队首先要研究自动化能力,因为这是创建自适应能力的关键。
在广域网战略中加入软件定义广域网(SD-WAN),有助于提高战略的适应性。接下来,I&O领导者应考虑网络团队的文化建设和技能培养,例如应用编程接口(API)和编程技能等,满足日新月异的业务需求。
提高多元环境的可观测性
混合环境部署(例如,混合云或云边融合)使实现不同环境可观测性所涉及的复杂程度呈指数级增长。加上急剧的增长,中国企业的网络部署面临巨大的挑战。这些环境在工具、操作方法、人员配备等方面各不相同,因此不仅需要在网络可观测性方面具备一定的一致性,还需要在确定应用和其他基础设施要素(例如存储)如何与网络交互方面具有一定一致性。这就要求在应用及其支持基础设施中直接设计可观测性。
首先,网络团队需要熟悉工具集,判断哪些方面的可观测性可通过现有工具来实现,然后判断需要补充哪些工具。确定好工具集之后,可进一步通过网络关键绩效指标(KPI)来衡量用户服务。其中,可选择的KPI包括延时、丢包、响应时间、带宽、利用率、抖动等。
与安全团队协作,确保可通过SASE来满足安全要求
混合部署涉及分布在多种环境中的用户、应用和数据,其中一部分由企业自行控制,另一部分则由合作厂商控制。多样的环境与严格的监管,给中国企业带来安全方面的挑战。为解决这一问题,网络团队需要和安全团队密切合作,从制定一个长期SASE战略着手,共同打造架构、完成设计、确认特定的产品和功能。
在网络架构和设计过程中,应先假设网络的任何部分均可能存在漏洞,然后采取相应的安全保障措施。Gartner将SASE定义为一种确保混合环境部署安全性的方式。传统观点认为,使用防火墙和隔离区(DMZ)即可保障用户会话的安全。这种观点在可预测环境中基本是正确的,因为基础设施的网络工作流已有明确定义,而且其运行仅由I&O团队提供支持。SASE方法则是对传统方法的颠覆,从会话出发保障安全,而不是从安全出发设置会话。这一架构应成为网络和安全团队共同合作的课题。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。