这次私有5G基础设施试验在Hitachi Astemo Americas位于美国肯塔基州贝瑞亚的电动汽车制造厂进行。本次试验的关注点是实时数字视频、人工智能和边缘到云的技术能够如何实现自动缺陷检测。
该试验项目结合了爱立信的私有5G和AWS Snow Family,在日立公司的工厂内为机器学习模型提供动力。在接入日立公司的视频分析系统后,组件组装操作的实时视频就会通过网络传输,帮助提前发现缺陷。
计算机视觉系统可以同时检测24个装配组件,而“传统方法”是逐个检测,这种方法大概需要一个人类检测员。由于采用了4K摄像头,该系统能够观察到亚毫米级的缺陷,公平地说,这比一个拿着写字板、戴着一副双光眼镜的人做得更好。
爱立信PCN商业和运营主管Thomas Noren表示:“此次合作的最大亮点在于,它并不涉及某个遥远的未来才会出现的功能。”“这些解决方案今天就可以部署在制造和企业环境中,为早期用户带来一系列竞争优势。作为全球技术领导者,爱立信、AWS和日立美国研发部门展示了如何通过合作推动创新。”
日立美国研发部门副总裁兼日立Astemo Americas首席架构师Sudhanshu Gaur补充表示:“我们探索并验证了由专用5G支持的新用例,展示了智能工厂已有的能力。”“专用5G、云和人工智能/机器学习自动化技术的组合有可能彻底改变我们制造产品的方式,我们很高兴能够站在这一创新的最前沿。”
自动缺陷检测和相关智能工厂工具的概念算不上多新鲜,但由于宏观 RAN 市场发展缓慢,爱立信等套件供应商可能会在未来几年想方设法提高人们对5G专用网络的认识并推动销售。虽然它比一般RAN市场小得多,但似乎是一个正在增长的领域。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。