这次私有5G基础设施试验在Hitachi Astemo Americas位于美国肯塔基州贝瑞亚的电动汽车制造厂进行。本次试验的关注点是实时数字视频、人工智能和边缘到云的技术能够如何实现自动缺陷检测。
该试验项目结合了爱立信的私有5G和AWS Snow Family,在日立公司的工厂内为机器学习模型提供动力。在接入日立公司的视频分析系统后,组件组装操作的实时视频就会通过网络传输,帮助提前发现缺陷。
计算机视觉系统可以同时检测24个装配组件,而“传统方法”是逐个检测,这种方法大概需要一个人类检测员。由于采用了4K摄像头,该系统能够观察到亚毫米级的缺陷,公平地说,这比一个拿着写字板、戴着一副双光眼镜的人做得更好。
爱立信PCN商业和运营主管Thomas Noren表示:“此次合作的最大亮点在于,它并不涉及某个遥远的未来才会出现的功能。”“这些解决方案今天就可以部署在制造和企业环境中,为早期用户带来一系列竞争优势。作为全球技术领导者,爱立信、AWS和日立美国研发部门展示了如何通过合作推动创新。”
日立美国研发部门副总裁兼日立Astemo Americas首席架构师Sudhanshu Gaur补充表示:“我们探索并验证了由专用5G支持的新用例,展示了智能工厂已有的能力。”“专用5G、云和人工智能/机器学习自动化技术的组合有可能彻底改变我们制造产品的方式,我们很高兴能够站在这一创新的最前沿。”
自动缺陷检测和相关智能工厂工具的概念算不上多新鲜,但由于宏观 RAN 市场发展缓慢,爱立信等套件供应商可能会在未来几年想方设法提高人们对5G专用网络的认识并推动销售。虽然它比一般RAN市场小得多,但似乎是一个正在增长的领域。
好文章,需要你的鼓励
这项研究由新加坡国立大学团队开发的DualParal技术,通过创新的双重并行架构解决了AI视频生成的长度限制问题。该方法同时在时间帧和模型层两个维度实现并行处理,配合分块降噪机制、特征缓存和协调噪声初始化策略,使生成分钟级长视频成为可能。实验表明,在生成1,025帧视频时,DualParal比现有技术减少了高达6.54倍的延迟和1.48倍的内存成本,同时保持了高质量的视频输出,为内容创作者提供了生成更长、更复杂视频叙事的新工具。
SoloSpeech是约翰霍普金斯大学研究团队开发的创新语音处理技术,针对"鸡尾酒会效应"问题提出了全新解决方案。该系统通过级联生成式管道整合压缩、提取、重建和校正过程,实现了高质量目标语音提取。与传统判别式模型相比,SoloSpeech采用无需说话者嵌入的设计,直接利用提示音频的潜在空间信息与混合音频对齐,有效避免特征不匹配问题。在Libri2Mix及多个真实世界数据集上的评测显示,SoloSpeech在清晰度、质量和泛化能力上均达到了领先水平,为语音分离技术开辟了新方向。
这项由北京大学深圳研究生院、伟湾大学、腾讯ARC实验室和兔小贝智能联合研究的Sci-Fi框架,通过创新的对称约束机制,解决了视频帧间插值中的关键问题。研究团队设计了轻量级EF-Net模块,增强结束帧约束力,使其与起始帧形成平衡影响,从而生成更自然流畅的中间过渡帧。实验证明,该方法在各种场景下都优于现有技术,特别适用于电影制作、动画创作和视频编辑领域,显著降低了人力成本。
这项来自西北大学和谷歌的研究突破了传统马尔可夫强化学习的局限,通过贝叶斯自适应RL框架解释了大语言模型中涌现的反思性推理行为。研究团队提出的BARL算法通过维护多个解题策略的后验分布,指导模型何时何地进行反思性探索,在数学推理任务上展现出显著优势,比基线方法减少高达50%的标记使用量,同时提高了准确率。这一研究不仅解释了"为什么反思有用",还提供了实用的指导原则,为AI系统的自适应推理能力开辟了新方向。