首先是与Nvidia的新合作伙伴关系,双方旨在推进RAN部署在跨混合云和多云平台的行业标准服务器上。红帽解释说,红帽的Kubernetes平台Red Hat OpenShift增加了对Nvidia融合加速器和Aerial SDK的支持,以帮助企业构建更强大的5G虚拟RAN和其他企业应用。红帽表示,此举提供了一个“可组合式的基础设施”,让客户能够支持边缘计算、人工智能、私有5G等应用更密集的计算需求。
与Nvidia的此次合作旨在让网络运营商能够采用开放式的架构,使他们能够在来自众多厂商的非专有组件之间进行选择。电信供应商在构建网络设备时可以遵循的各项行业标准,让开放式无线电接入网络变成可能,从而为最终用户提供了更多选择,让他们可以自由地从各种可编程的、智能的、分解的、虚拟化的、可互操作的网络功能中进行选择。
电信公司则通过使用可组合式基础设施,无需更专业的软件和硬件,从而简化他们的资源并优化现有的IT环境。他们可以使用Red Hat OpenShift作为他们网络基础,将其与他们选择的基础设施组件进行配对,然后集成Nvidia的GPU、DPU和融合加速器,将GPU与DPU结合到一个包中,更快速地处理数据包。红帽表示,这种设置还让网络运营商能够将那些需要更高安全性的基础设施密集型任务进行隔离。
红帽表示,除了Nvidia之外还将与三星展开合作,提供一种新的vRAN解决方案,该解决方案具有增强的集成和自动化功能,并将在今年下半年作为概念验证提供给客户。红帽表示,该解决方案旨在帮助服务提供商更好地大规模管理他们基于Open RAN的网络,同时提供更高的灵活性和运营效率,以满足5G的需求。
在能源效率方面,红帽正在与英国芯片设计公司Arm展开合作,打造新的网络解决方案,以降低一系列应用的功耗。此次合作包括开发和测试新的能源效率概念验证,将红帽的开源技术与Arm最高效的、基于精简指令集计算架构的计算平台相结合。红帽方面解释说,通过在Arm最新Neoverse CPU上运行Red Hat OpenShift和Red Hat Enterprise Linux,客户将能够获得性能更好的、更节能的CPU架构,该架构现在经过定制可以在低延迟5G网络上运行云原生应用了。
同时,为了帮助企业更好地了解工作负载的耗电情况,红帽宣布推出基于Kubernetes的开源 fficient Power Level Exporter项目。众所周知,Kepler刚刚被捐赠给云原生计算基金会,此举将使更广泛的社区能够扩展其功能。
Kepler是一款可以获取能源使用指标的软件,可以接入一系列网络基础设施平台,专注于报告、减少和回归分析,帮助企业更好地了解如何控制能源消耗。Kepler通过使用CPU性能计数器、扩展的Berkeley数据包过滤器、机器学习等技术来估算工作负载的功耗,然后将此信息导出为指标,然后用于调度、扩展、报告和可视化,使用户能够准确评估其云原生工作负载的碳足迹。
除了优化网络基础设施外,Kepler还可以通过帮助开发人员创建耗电更少的应用,来帮助他们开发更具可持续性的软件。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。