电信公司热衷于采用开放式的移动网络架构,这让他们能够自由地使用来自各种不同厂商的非专有子组件。众所周知,开放式无线电接入网络是通过一套行业标准实现的,电信提供商在生产相关网络设备时可以遵循这些标准。这一切都是为了电信公司提供更多选择,让他们可以从各种提供了可编程、智能、分解、虚拟化的和可互操作等网络功能的组件中进行选择。
为了实现这一愿景,戴尔宣布即将推出Telecom Infrastructure Blocks for Red Hat,这是一款旨在帮助网络运营商满足5G核心和RAN工作负载需求的新产品。这是一套与Red Hat共同设计的、完全工程化的云原生解决方案,捆绑了使用Red Hat OpenShift软件和Advanced Cluster Management for Kubernetes构建、支持和扩展核心网络功能所需的硬件、软件和订阅服务。
现有电信网络通常都是由孤立的堆栈构建起来的,这限制了运营的灵活性,戴尔表示,Telecom Infrastructure Blocks for Red Hat是基于开放式设计的,可以简化下一代开放式电信云的设计和部署,让运营商能够提高IT资源的效率并降低运营成本和功耗。
戴尔表示,Telecom Infrastructure Blocks for Red Hat将于2023年下半年在全球上市。
Red Hat公司电信、媒体、娱乐和边缘生态系统副总裁Honoré LaBourdette表示,网络需要跨基础设施和软件定义架构的分层功能,以及额外的安全措施、编排和云原生应用。“通过与技术娴熟的硬件和软件厂商组成的生态系统进行合作,我们能够更好地为网络运营商提供量身定制的解决方案,满足他们的独特需求。”
除了Telecom Infrastructure Blocks for Red Hat之外,戴尔还宣布推出了一系列专为开放电信网络和边缘部署而设计的PowerEdge服务器。全新的紧凑型戴尔PowerEdge XR8000、XR7620和XR5610服务器将于今年5月全球上市,专为电信、开放式RAN和移动边缘计算工作负载定制。这些服务器基于英特尔第四代英特尔至强Scalable处理器,具有英特尔的vRAN Boost功能,无需外部加速卡。据戴尔称,这节省了大约20%的计算功率,与旧服务器相比降低了拥有成本。
在无线网络方面,戴尔公布了一项新的Dell Private Wireless计划。该计划面向通信服务提供商和其他需要更多选择的企业,包含了戴尔和技术合作伙伴共同开发的多个解决方案,例如,其中Dell Private Wireless with Airspan and Expeto是面向大中型企业的完全集成型产品,使大中型企业能够跨4G和5G网络扩展现场和远程应用支持。
此外,Dell Private Wireless with Athonet则主要针对的是那些希望快速部署所选网络架构的中小型企业。现在这两款产品都已上市。戴尔表示,这些产品都是基于开放式架构的,由戴尔预先测试和验证,包括了自助服务操作功能。
最后,戴尔计划在爱尔兰科克市开设一个新的开放电信生态系统实验室,为客户和合作伙伴提供一个地点以便围绕开放电信生态系统展开协作。该实验室将于今年下半年开放,成为戴尔位于得克萨斯州朗德罗克总部的原始实验室的一个延伸,该实验室为戴尔工程师提供专门的通道,以进行持续的设计咨询和验证。目前,该实验室支持超过25个客户和合作伙伴测试、认证和验证新的开放式电信解决方案。设立实验室的目的是,让一切都可以在实验室中进行测试,然后快速部署到现实环境中。
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。