近日,数据可视化公司Grafana Labs与阿里云建立核心合作伙伴关系。双方将发挥各自优势,在可观测性产品、服务支持等方面展开全方位合作,共同打造Grafana托管服务,帮助广大企业快速具备各类数据源即时查询与数据可视化的可观测性能力。此次合作,也是Grafana与亚太地区云厂商的首次深度合作,双方将在中国区提供首款Grafana托管服务。
随着云原生技术不断落地,面向分布式应用和容器的数据可观测技术,覆盖从前端到后端、从基础设施层到应用层,成为企业必备运维能力。凭借其丰富的可视化看板、多数据源接入等特性,Grafana已经成为云原生时代的可观测可视化事实标准。CNCF发布的《 End User Technology Radar》报告显示,三分之二的受访者将 Grafana 与 Prometheus作为首选可观测工具。
为了帮助全球云计算用户构建基于自身业务特征的可观测性体系,阿里云与Grafana携手打造Grafana托管服务,使用户高效分析与查看指标、日志和跟踪的同时,无需关注服务器配置、软件更新等繁杂工作,有效降低运维复杂性与工作量,并借助阿里云强大的云原生能力,全面提升Grafana安全性与可用性。
Grafana实验室联合创始人兼首席执行官Raj Dutt表示,“我们在Grafana Labs的目标是确保Grafana可用,但这对我们的用户来说是最有意义的——无论是自建设施,还是在阿里云这样的公有云平台。借助全托管服务方式与不断展开的深度合作,阿里云的海量全球用户将获得远超自托管的便捷性与可用性,更高效、更低门槛地使用Grafana领先的开源看板和可观测性功能。更为双方打开一扇全新市场的大门。”
阿里云智能基础产品事业部总经理蒋江伟表示,“阿里云可观测产品始终致力于为企业数字创新保驾护航,双方此次合作将为全球用户带来更加优质、贴合业务场景的产品体验,为客户提供完整的可观测性方案,赋能企业数字化转型。与Grafana此次的合作,不仅仅是为了给客户创造更多价值,更是与开源厂商的强强联合,推动开源生态进一步茁壮成长。”
据悉,未来双方将不断扩展合作范围和深度,为企业提供更加丰富的基于阿里云的优秀可观测性解决方案,解决企业在数字经济时代的运维难题。
目前阿里云Grafana服务正在免费公测中,要在阿里云上了解更多关于Grafana的信息,请访问https://www.aliyun.com/activity/middleware/grafana
关于Grafana Labs
Grafana Labs围绕Grafana提供了一个开放的、可组合的监控和可观测性堆栈,Grafana是用于仪表板和可视化的领先开源技术。Grafana Labs的客户超过1500家,包括彭博社、摩根大通、易趣、贝宝和索尼,全球有超过750000台Grafana的活动安装。Grafana Labs通过全栈产品帮助公司管理其可观测性战略,这些产品可以通过Grafana Cloud完全管理,也可以通过Grafana Enterprise stack自我管理,两者都具有广泛的企业数据源插件、仪表板管理、警报、报告和安全性、可扩展指标(Prometheus&Graphite),日志(Grafana Loki)和跟踪(Grafana Tempo)。Grafana实验室得到领先投资者Lightspeed Venture Partners、Lead Edge Capital、GIC、红杉资本和Coatue的支持。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。