近日,数据可视化公司Grafana Labs与阿里云建立核心合作伙伴关系。双方将发挥各自优势,在可观测性产品、服务支持等方面展开全方位合作,共同打造Grafana托管服务,帮助广大企业快速具备各类数据源即时查询与数据可视化的可观测性能力。此次合作,也是Grafana与亚太地区云厂商的首次深度合作,双方将在中国区提供首款Grafana托管服务。

随着云原生技术不断落地,面向分布式应用和容器的数据可观测技术,覆盖从前端到后端、从基础设施层到应用层,成为企业必备运维能力。凭借其丰富的可视化看板、多数据源接入等特性,Grafana已经成为云原生时代的可观测可视化事实标准。CNCF发布的《 End User Technology Radar》报告显示,三分之二的受访者将 Grafana 与 Prometheus作为首选可观测工具。
为了帮助全球云计算用户构建基于自身业务特征的可观测性体系,阿里云与Grafana携手打造Grafana托管服务,使用户高效分析与查看指标、日志和跟踪的同时,无需关注服务器配置、软件更新等繁杂工作,有效降低运维复杂性与工作量,并借助阿里云强大的云原生能力,全面提升Grafana安全性与可用性。
Grafana实验室联合创始人兼首席执行官Raj Dutt表示,“我们在Grafana Labs的目标是确保Grafana可用,但这对我们的用户来说是最有意义的——无论是自建设施,还是在阿里云这样的公有云平台。借助全托管服务方式与不断展开的深度合作,阿里云的海量全球用户将获得远超自托管的便捷性与可用性,更高效、更低门槛地使用Grafana领先的开源看板和可观测性功能。更为双方打开一扇全新市场的大门。”
阿里云智能基础产品事业部总经理蒋江伟表示,“阿里云可观测产品始终致力于为企业数字创新保驾护航,双方此次合作将为全球用户带来更加优质、贴合业务场景的产品体验,为客户提供完整的可观测性方案,赋能企业数字化转型。与Grafana此次的合作,不仅仅是为了给客户创造更多价值,更是与开源厂商的强强联合,推动开源生态进一步茁壮成长。”
据悉,未来双方将不断扩展合作范围和深度,为企业提供更加丰富的基于阿里云的优秀可观测性解决方案,解决企业在数字经济时代的运维难题。
目前阿里云Grafana服务正在免费公测中,要在阿里云上了解更多关于Grafana的信息,请访问https://www.aliyun.com/activity/middleware/grafana

关于Grafana Labs
Grafana Labs围绕Grafana提供了一个开放的、可组合的监控和可观测性堆栈,Grafana是用于仪表板和可视化的领先开源技术。Grafana Labs的客户超过1500家,包括彭博社、摩根大通、易趣、贝宝和索尼,全球有超过750000台Grafana的活动安装。Grafana Labs通过全栈产品帮助公司管理其可观测性战略,这些产品可以通过Grafana Cloud完全管理,也可以通过Grafana Enterprise stack自我管理,两者都具有广泛的企业数据源插件、仪表板管理、警报、报告和安全性、可扩展指标(Prometheus&Graphite),日志(Grafana Loki)和跟踪(Grafana Tempo)。Grafana实验室得到领先投资者Lightspeed Venture Partners、Lead Edge Capital、GIC、红杉资本和Coatue的支持。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。