在工业领域中,IT(Information Technology)信息技术与OT(Operation Technology )操作技术之间天然存在着种种差异,两者都有各自的目标,沿着不同的路径发展,并各有各的生态体系。因此,长期以来IT与OT之间都是相互隔离的状态。但在今天工业信息化与数字化的发展趋势下,IT与OT之间的这种鸿沟显然愈发阻碍了制造业向未来挺进的步伐。
随着工业信息化建设的不断深入,在制造业中以往不同协议、不同厂家等异构产品的整合及管理问题更加凸显,这也一直困扰工业和制造业的管理者。而在IT领域中,统一管理的概念及产品早已成熟,如果将IT管理理念引入OT管理当中将大大提升其生产效率。
因此,近年来OT开始逐渐拥抱IT,IT也开始更多的融入到各种工业环境当中,而如何将IT与OT进行更加有效的融合,已经成为工业数字化转型的基础和关键所在。
众所周知,随着工业互联网、智能制造和大数据的出现及运用,IT与OT之间的融合也愈发紧密,但假如在合适的时机缺乏合适的信息,也会导致决策错误和产生不可靠的行动。换句话说,面对工业生产环境,对于IT与OT来说都将面临更加苛刻的要求,因此两者融合也将是一个分阶段的实施过程。
而随着工业4.0的来临,越来越多的企业开始将IT技术引入到OT技术之中。以纺织制造企业为例,瑞士欧瑞康纺织集团(原苏拉集团)就是一家全球科技集团,也是纺织机械全面解决方案的世界领导者,其设备与服务涵盖了整个纱线生产(天然纤维和人造纤维)以及非制造产品生产领域。
欧瑞康信息部IT经理韩志军就曾表示,“工业IT方案永远都是朝着更加安全可靠、更高价值,同时兼顾灵活可变而努力。”这看起来与传统IT场景的需求有一定差别。
另外,在上云方面,欧瑞康也有自己的打算,将建立起公有云+私有云的混合云方式,以及ERP等企业应用平台的融合,这些都将依赖IT与OT的有效融合,才能实现对企业总体数据的协作与共享,并从生产数据中挖掘出更大的价值。
同时,基于内外网络的商业数据保护,也是工业制造的一个重要基石,这也是工业IT与传统IT的一个很大不同。在工业IT中,不仅要保障网络的可靠连接,更要对网络进行合理划分,保证其安全性,其次才是网络的灵活性需求,这也是IT在工业制造领域中的主要需求与方向。
而随着OT与IT的融合度越来越高,工业数据的价值将得到进一步的释放,未来制造类企业的内部平台将逐渐整合,外部数据会不断向云端迁移,而内外部数据的统一管理与协作能力,将成为未来工业数字化转型的重要技术指标。
可以想见,随着工业化的不断推进,越来越多的人工操作将被软件或机器所替代,工业自动化程度也将得到大幅提升,而这都是在IT与OT的不断深化融合中得以实现的。
好文章,需要你的鼓励
Panzura在其Symphony数据管理平台中新增了访问控制列表分析和自动修复功能。该平台专门处理EB级非结构化数据集,具备扫描、分层、迁移和合规分析等功能。Panzura声称58%的企业受到权限扩散问题影响,74%的数据泄露涉及特权凭证滥用。新版本重点解决权限继承中断、过度授权访问和合规盲点等问题,提供完整的文件系统权限可视性和快速问题解决能力。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
Arista Networks宣布收购博通旗下VeloCloud SD-WAN业务,交易金额约10亿美元。VeloCloud是SD-WAN领域先驱企业,拥有集成安全功能的云管理SD-WAN解决方案。此次收购填补了Arista在分支机构连接方面的空白,使其能够提供端到端网络解决方案。同时,前思科高管Todd Nightingale加入担任总裁兼首席运营官,将助力公司拓展更广泛的客户群体。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。