在工业领域中,IT(Information Technology)信息技术与OT(Operation Technology )操作技术之间天然存在着种种差异,两者都有各自的目标,沿着不同的路径发展,并各有各的生态体系。因此,长期以来IT与OT之间都是相互隔离的状态。但在今天工业信息化与数字化的发展趋势下,IT与OT之间的这种鸿沟显然愈发阻碍了制造业向未来挺进的步伐。
随着工业信息化建设的不断深入,在制造业中以往不同协议、不同厂家等异构产品的整合及管理问题更加凸显,这也一直困扰工业和制造业的管理者。而在IT领域中,统一管理的概念及产品早已成熟,如果将IT管理理念引入OT管理当中将大大提升其生产效率。
因此,近年来OT开始逐渐拥抱IT,IT也开始更多的融入到各种工业环境当中,而如何将IT与OT进行更加有效的融合,已经成为工业数字化转型的基础和关键所在。
众所周知,随着工业互联网、智能制造和大数据的出现及运用,IT与OT之间的融合也愈发紧密,但假如在合适的时机缺乏合适的信息,也会导致决策错误和产生不可靠的行动。换句话说,面对工业生产环境,对于IT与OT来说都将面临更加苛刻的要求,因此两者融合也将是一个分阶段的实施过程。
而随着工业4.0的来临,越来越多的企业开始将IT技术引入到OT技术之中。以纺织制造企业为例,瑞士欧瑞康纺织集团(原苏拉集团)就是一家全球科技集团,也是纺织机械全面解决方案的世界领导者,其设备与服务涵盖了整个纱线生产(天然纤维和人造纤维)以及非制造产品生产领域。
欧瑞康信息部IT经理韩志军就曾表示,“工业IT方案永远都是朝着更加安全可靠、更高价值,同时兼顾灵活可变而努力。”这看起来与传统IT场景的需求有一定差别。
另外,在上云方面,欧瑞康也有自己的打算,将建立起公有云+私有云的混合云方式,以及ERP等企业应用平台的融合,这些都将依赖IT与OT的有效融合,才能实现对企业总体数据的协作与共享,并从生产数据中挖掘出更大的价值。
同时,基于内外网络的商业数据保护,也是工业制造的一个重要基石,这也是工业IT与传统IT的一个很大不同。在工业IT中,不仅要保障网络的可靠连接,更要对网络进行合理划分,保证其安全性,其次才是网络的灵活性需求,这也是IT在工业制造领域中的主要需求与方向。
而随着OT与IT的融合度越来越高,工业数据的价值将得到进一步的释放,未来制造类企业的内部平台将逐渐整合,外部数据会不断向云端迁移,而内外部数据的统一管理与协作能力,将成为未来工业数字化转型的重要技术指标。
可以想见,随着工业化的不断推进,越来越多的人工操作将被软件或机器所替代,工业自动化程度也将得到大幅提升,而这都是在IT与OT的不断深化融合中得以实现的。
好文章,需要你的鼓励
2025年,企业技术高管面临巨大压力,需要帮助企业从持续的AI投入中获得回报。大多数高管取得了进展,完善了项目优先级排序方法。然而,CIO仍面临AI相关问题。支离破裂的AI监管环境和宏观经济阻力将继续推动技术高管保持谨慎态度。随着AI采用增长的影响不断显现,一些CIO预期明年将带来劳动力策略变化。
这篇论文提出了CJE(因果法官评估)框架,解决了当前LLM评估中的三大致命问题:AI法官偏好倒置、置信区间失效和离线策略评估失败。通过AutoCal-R校准、SIMCal-W权重稳定和OUA不确定性推理,CJE仅用5%的专家标签就达到了99%的排名准确率,成本降低14倍,为AI评估提供了科学可靠的解决方案。
FinOps基金会周四更新了其FinOps开放成本和使用规范云成本管理工具,新版本1.3更好地支持多供应商工作流。该版本新增了合同承诺和协商协议数据集,增加了跨工作负载成本分摊跟踪列,以及云支出和使用报告时效性和完整性的元数据可见性。随着云和AI采用推动企业IT预算增长,技术供应商正在关注将成本与价值联系起来的努力。大型企业通常使用三到四家云供应商,小企业可能使用两家,同时还有数据中心、SaaS和许可等服务。
NVIDIA团队开发出Fast-FoundationStereo系统,成功解决了立体视觉AI在速度与精度之间的两难选择。通过分而治之的策略,该系统实现了超过10倍的速度提升同时保持高精度,包括知识蒸馏压缩特征提取、神经架构搜索优化成本过滤,以及结构化剪枝精简视差细化。此外,研究团队还构建了包含140万对真实图像的自动伪标注数据集,为立体视觉的实时应用开辟了新道路。