物联网、5G和AR/VR等新兴技术的兴起,一直在驱动着边缘网络计算需求。但全球面临的新冠肺炎疫情,让高速网络的需求以一种前所未有的速度飞速增长——视频会议和流媒体内容播放的需求量均达到了创纪录的高度,两者都需要更高的带宽和零延迟数据传输。通常定义下,五毫秒以内的延迟都可以被认为是“零延迟”,但在当前全面联网的远程办公时代,五毫秒延迟也已经明显太慢了。
网络从未如此关键。无论是电话会议还是流媒体(视频内容或游戏),服务提供商都无法承受卡顿、分辨率下降和缓存变慢的现象。为了解决这一问题,业务应用和数据必须尽可能靠近数据摄取点,缩短总体往返时间,最终让应用程序可以实时获取信息。
但在实际执行中却不那么容易。
直面挑战
对于服务提供商来说,边缘计算有着独特的挑战。在边缘领域涌现出大量的解决方案意味着部署的容器越来越多,增长速度超过了人们可以实现有效管理的速度。虽然可以使用编排工具进行自动部署,但要确保自动化的故障排查和服务保证,可观测性才是关键。
毕竟,任何程度的服务中断都将会招致大量的客户投诉,因此服务提供商会迫使IT团队尽可能快速地解决问题。但从IT团队的角度来讲,即使已经拥有了识别问题来源和解决问题所需的信息,但检查分散于各服务器组件的大量遥测数据依然会是很大的挑战。IT团队需要能够快速地处理这些数据的能力,并根据可见的趋势获得有价值的洞察。
数据驱动的解决方案
解决方法的关键,就是在于人工智能的能力,更具体地说是机器学习,在其驱动下,编排解决方案可以对各工作负载进行可扩展的预测性操作。通过机器学习与实时网络监测的结合,可为自动化工具提供所需的洞察,从而以比人工更快更准确的方式对物理和虚拟网络功能进行预设、实例化并配置。这一过程也意味着IT团队可以把时间用在具有更高价值的任务关键型项目上,为企业创造实际收益。
将人工智能带到云端
针对应用程序在网络边缘的生命周期管理,机器学习也发挥着关键作用。在只有几个集中式数据中心构成的环境中,运营商可以明确应用程序虚拟网络功能(VNF)的最佳性能条件。但是随着环境分散成数千个小型场所,虚拟网络功能就有了更复杂的需求,必须根据实际情况予以满足。
运营商没有足够的带宽可以满足所有这些需求,因此人工智能的应用再次彰显出重要性。机器学习算法可以通过一个前期循环测试来运行所有组件,以评估它们在生产场所的表现,让运营人员判定所测试的应用程序可以在边缘正常运行。
由边缘网络决定的未来
边缘计算的兴起彻底改变了服务提供商对于基础设施的想法。人们越来越将边缘看作是优质资产。由服务提供商提供和管理,在人工智能和机器学习的优化下,边缘计算可被用于数不胜数的业务目的。一旦这一高度沉浸式边缘计算力得到释放,我们就会看到应用程序和新的工作负载涌向网络边缘,这在五年前还是无法想象的。
在未来,不只是服务提供商要利用网络边缘。很快,边缘云环境将会解放更多潜力——开放、安全、云原生,具有各种可扩展的预测性操作——可满足更丰富的企业、消费者和电信工作负载需求。边缘云将集成安全能力,有效减少安全事件的破坏半径。最终,人工智能驱动的预测性操作将会被用于管理运行着数千个边缘位置的复杂环境,从而有效提升消费者和员工使用体验。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。