至顶网网络与安全频道 01月19日 综合消息: 新兴的网络金融业务模式下,越来越多的银行实现了金融服务能力的外延拓展。但与此同时,新兴的金融欺诈手段也层出不穷,并呈现产业化与组织化的态势,欺诈行为更具隐蔽性和蔓延性。巨大的欺诈风险已成为国内金融领域面临的最大挑战之一,全面提升反欺诈防控能力迫在眉睫。
近日,神州信息推出新一代智能实时反欺诈系统Sm@rtRAF。围绕支付、信贷、理财、信用卡审批等容易出现金融欺诈行为的业务场景,融合银行内部数据、同业数据、外部信用数据,分析形成风控规则并建模,目前可生成账户、银行卡、身份证、设备、用户交易、用户行为偏好等多种反欺诈数据模型,帮助银行做到事前预警,事中处置,事后分析,并通过算法和知识图谱形成可学习的反欺诈模型。
事后分析通过对模型反复训练,并再次运用到事前与事中,由此构建起主动、智能、系统化的互联网金融全流程反欺诈体系。可实现根据风险形势变化,实时动态部署智能化监控策略,扩大风控覆盖范围和拦截半径,不断提高风险交易识别的准确率,最大程度帮助银行解决在各业务环节遇到的欺诈威胁。
在客户体验方面,神州信息智能实时反欺诈系统在保证客户享受便捷网络金融服务的同时,可实现对全渠道、全业务的7x24小时全面风险监控。目前,该系统已在北京、乌鲁木齐、秦皇岛等多地的金融机构成功落地,切实保障了用户的资金与账户安全,实现了风险防控和客户体验“双提升”。
神州信息反欺诈专家介绍:“神州信息智能实时反欺诈系统Sm@rtRAF采用分布式架构,应用微服务设计理念,可实时承担企业级交易系统的风险拦截,应对业务场景规则的复杂性与多样性,以及互联网交易的高频与瞬时海量并发。该系统具备监控可视化、配置参数化和功能定制化等特点,可满足银行内部管理、策略制定、业务开发等客观需求。
自2018年,神州信息进一步聚焦金融科技战略,不断加大对新技术创新应用的研发投入,已成功将人工智能、大数据、分布式、区块链等多种行业前沿技术应用于金融业务场景,从交易处理、架构转型、渠道营销、数据处理、开放转型等五方面帮助国内金融机构实现能力提升,满足了银行等金融机构在新业务模式下的多样需求。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。