至顶网网络与安全频道 01月13日 编译:IBM研究实验室近日宣布发布开源安全工具包SysFlow,用于查找云和容器环境中的漏洞。SysFlow旨在解决网络保护中的常见问题。现代安全监控工具可以高精确度地捕获系统活动,跟踪到单个事件例如文件更改操作等。
这很有用但也会产生大量“噪音”,更难以发现威胁。IBM研究人员Frederico Araujo和Teryl Taylor称在这种情况下寻找漏洞无异于“大海捞针”。
SysFlow减少了安全团队必须筛选的信息量。该工具包可以从给定的系统中收集操作数据,并将这些数据压缩到一个模型中,该模型可以显示系统的高级别行为而不是单个事件(例如HTTP请求),而且还可以呈现这种本地化事件,但是SysFlow会将其与相关行为模式进行关联,而不是为了详细分析提供必要的上下文。
Araujo和Taylor在一篇博客文章中举例了一种示漏洞场景,结果证明该工具包是非常方便的。他们假设黑客发现了企业网络中存在漏洞的Node.js服务器,将恶意脚本下载到该服务器上,然后入侵了敏感的客户数据库。
两位研究人员解释说:“先进的监视工具只能捕获断开连接的事件流,但SysFlow可以连接系统上每个攻击步骤的实体。例如,突出显示的SysFlow跟踪情况可以精确地映射攻击杀死链的每一步:劫持node.js进程,然后与端口2345上的远程恶意软件服务器进行对话,以下载并执行恶意脚本。”
SysFlow不仅可以帮助安全团队发现威胁,而且在这个过程中还能节省硬件资源。据IBM称,与传统工具相比,该工具包降低安全数据收集率是“数量级”的。
SysFlow具有内置的规则引擎,可自定义自动发现可疑事件。除了漏洞之外,该工具包还可以发现违反法规的情况,例如将财务记录保存在不恰当的地方。当需要进行更高粒度的检测时,安全团队可以将他们的自定义威胁识别算法编程到SysFlow中。
IBM认为,该平台可与其他开源工具一起使用。“SysFlow的开放序列化格式和库,支持与开放源代码框架(例如Spark、scikit-learn)和自定义分析微服务的集成,”Araujo和Taylor在博客中这样写道。
SysFlow能够将原始系统数据转换为高级别查看恶意行为情况,这个功能是其他解决方案也能提供的。目前有几家安全保护厂商(包括最近刚刚获得融资的初创公司Cybereason)都提供了商业化的调查工具,可以追踪攻击者攻击企业网络的路径。但是,IBM以开源的形式免费提供SysFlow,这一点将让SysFlow在安全工具生态系统中占据特殊的位置。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。