至顶网网络与安全频道 01月13日 编译:IBM研究实验室近日宣布发布开源安全工具包SysFlow,用于查找云和容器环境中的漏洞。SysFlow旨在解决网络保护中的常见问题。现代安全监控工具可以高精确度地捕获系统活动,跟踪到单个事件例如文件更改操作等。
这很有用但也会产生大量“噪音”,更难以发现威胁。IBM研究人员Frederico Araujo和Teryl Taylor称在这种情况下寻找漏洞无异于“大海捞针”。
SysFlow减少了安全团队必须筛选的信息量。该工具包可以从给定的系统中收集操作数据,并将这些数据压缩到一个模型中,该模型可以显示系统的高级别行为而不是单个事件(例如HTTP请求),而且还可以呈现这种本地化事件,但是SysFlow会将其与相关行为模式进行关联,而不是为了详细分析提供必要的上下文。
Araujo和Taylor在一篇博客文章中举例了一种示漏洞场景,结果证明该工具包是非常方便的。他们假设黑客发现了企业网络中存在漏洞的Node.js服务器,将恶意脚本下载到该服务器上,然后入侵了敏感的客户数据库。
两位研究人员解释说:“先进的监视工具只能捕获断开连接的事件流,但SysFlow可以连接系统上每个攻击步骤的实体。例如,突出显示的SysFlow跟踪情况可以精确地映射攻击杀死链的每一步:劫持node.js进程,然后与端口2345上的远程恶意软件服务器进行对话,以下载并执行恶意脚本。”
SysFlow不仅可以帮助安全团队发现威胁,而且在这个过程中还能节省硬件资源。据IBM称,与传统工具相比,该工具包降低安全数据收集率是“数量级”的。
SysFlow具有内置的规则引擎,可自定义自动发现可疑事件。除了漏洞之外,该工具包还可以发现违反法规的情况,例如将财务记录保存在不恰当的地方。当需要进行更高粒度的检测时,安全团队可以将他们的自定义威胁识别算法编程到SysFlow中。
IBM认为,该平台可与其他开源工具一起使用。“SysFlow的开放序列化格式和库,支持与开放源代码框架(例如Spark、scikit-learn)和自定义分析微服务的集成,”Araujo和Taylor在博客中这样写道。
SysFlow能够将原始系统数据转换为高级别查看恶意行为情况,这个功能是其他解决方案也能提供的。目前有几家安全保护厂商(包括最近刚刚获得融资的初创公司Cybereason)都提供了商业化的调查工具,可以追踪攻击者攻击企业网络的路径。但是,IBM以开源的形式免费提供SysFlow,这一点将让SysFlow在安全工具生态系统中占据特殊的位置。
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。