至顶网网络与安全频道 11月26日 编译:Palo Alto Networks已经签署协议以1.5亿美元全现金交易的方式收购云安全初创公司Aporeto。
成立于2016年的Aporeto公司提供了一个零信任的云安全平台,该平台通过分析来自任何可用系统的工作负载元数据和用户身份数据自动生成身份。零信任是一种越来越流行的安全模型,基于严格访问控制以及在默认情况下不信任任何人(即使是那些已经存在于网络中的人)的基本原理。
Aporeto通过基于白名单的安全方法提供零信任。Aporeto公司联合创始人Amir Sharif曾在2017年表示,Aporeto的解决方案面向所有应用组件实现端到端的身份验证、授权和加密,包括虚拟机、容器和微服务。
Sharif表示:“这么做可以让安全性在任何位置都是跟随应用的,不管是在哪种网络架构中,包括让WAN分布于不同的云中。由于Aporeto的安全性已经嵌入到基础设施中,因此安全性对开发人员而言是不可见且不受干扰的,从而让开发人员可以快速行动并专注于核心功能,而不必将精力用于满足安全性要求的繁琐工作上。”
Aporeto给Palo Alto Networks带来了一系列客户,包括Comcast Ventures、Bart、British Columbia、Informatica和Exact Transactions。
在被Palo Alto收购之前,Aporeto已经筹集了3450万美元的风投资金,投资方包括Norwest Venture Partners、Data Collective、Telia Ventures、National Grid Partners、Comcast Ventures和Wing Venture Capital。
对于Palo Alto Networks来说,此次收购将有助于加强自己的Prisma Cloud功能。预计该交易将在第二财季完成。
而且,此次收购也是Palo Alto Network在不到两年时间内的第七次收购,此前的收购包括:9月5日收购Zingbox,4.75亿美元;5月29日收购Twistlock(4.1亿美元)和PureSe;2月19日收购Demisto,5.6亿美元;2018年10月收购RedLock,1.73亿美元;2018年4月收购Secdo,1亿美元;2018年3月收购Evident.io,3亿美元。
在公布这一消息的同时,Palo Alto Networks公布了截至10月31日的第一财季财报。
该季度Palo Alto Networks的收入为7.719亿美元,较去年同期增长18%;净亏损为5960万美元,合稀释后每股收益62美分,去年同期亏损3830万美元,合稀释每股收益41美分。除诸如股票补偿等费用的利润从去年同期的1.154亿美元降至1.048亿美元,或稀释后每股1.05美元。
Palo Alto Networks预计第二财季收入在8.38亿美元至8.48亿美元之间,总收入将在9.85亿美元至10亿美元之间。扣除收购Aporeto的净支出,预计调整后每股收益为1.11至1.13美元。
Palo Alto Networks预计整个2020财年的收入为34.4亿美元至34.8亿美元,现金收入为41.05亿美元至41.65亿美元,调整后每股收益为4.90美元至5美元。
尽管收益超出市场预期,但投资者对下个季度的指引感到失望,分析师此前预计第二财季每股收益为1.30美元,远高于Palo Alto估计的1.13美元至1.15美元,此外全年预测也低于分析师普遍预期的每股5.07美元。
截至美国东部时间晚间7:30,Palo Alto Networks股票在盘后交易中下跌了8.5%至229.10美元。
好文章,需要你的鼓励
Luminary Cloud宣布完成7200万美元B轮融资,专注开发"物理AI"技术。该公司云原生平台可将仿真速度提升100倍,利用物理信息模型实时预测汽车、飞机等产品性能。公司推出针对特定行业的预训练模型,包括与本田合作的汽车设计模型和与Otto航空合作的飞机开发模型。融资由西门子风投领投,将用于扩大研发团队和市场销售。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
伦敦量子动态科技公司宣布交付业界首台采用传统半导体制造工艺的量子计算机。该系统已安装在英国国家量子计算中心,使用标准化300毫米硅晶圆,是首台自旋量子比特计算机。系统采用CMOS技术,占地约三个19英寸服务器机架,具备数据中心友好特性。公司开发的可扩展瓦片架构支持大规模生产,未来可扩展至每个量子处理单元数百万量子比特,为商业化应用奠定基础。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。