至顶网网络与安全频道 11月26日 编译:Palo Alto Networks已经签署协议以1.5亿美元全现金交易的方式收购云安全初创公司Aporeto。
成立于2016年的Aporeto公司提供了一个零信任的云安全平台,该平台通过分析来自任何可用系统的工作负载元数据和用户身份数据自动生成身份。零信任是一种越来越流行的安全模型,基于严格访问控制以及在默认情况下不信任任何人(即使是那些已经存在于网络中的人)的基本原理。
Aporeto通过基于白名单的安全方法提供零信任。Aporeto公司联合创始人Amir Sharif曾在2017年表示,Aporeto的解决方案面向所有应用组件实现端到端的身份验证、授权和加密,包括虚拟机、容器和微服务。
Sharif表示:“这么做可以让安全性在任何位置都是跟随应用的,不管是在哪种网络架构中,包括让WAN分布于不同的云中。由于Aporeto的安全性已经嵌入到基础设施中,因此安全性对开发人员而言是不可见且不受干扰的,从而让开发人员可以快速行动并专注于核心功能,而不必将精力用于满足安全性要求的繁琐工作上。”
Aporeto给Palo Alto Networks带来了一系列客户,包括Comcast Ventures、Bart、British Columbia、Informatica和Exact Transactions。
在被Palo Alto收购之前,Aporeto已经筹集了3450万美元的风投资金,投资方包括Norwest Venture Partners、Data Collective、Telia Ventures、National Grid Partners、Comcast Ventures和Wing Venture Capital。
对于Palo Alto Networks来说,此次收购将有助于加强自己的Prisma Cloud功能。预计该交易将在第二财季完成。
而且,此次收购也是Palo Alto Network在不到两年时间内的第七次收购,此前的收购包括:9月5日收购Zingbox,4.75亿美元;5月29日收购Twistlock(4.1亿美元)和PureSe;2月19日收购Demisto,5.6亿美元;2018年10月收购RedLock,1.73亿美元;2018年4月收购Secdo,1亿美元;2018年3月收购Evident.io,3亿美元。
在公布这一消息的同时,Palo Alto Networks公布了截至10月31日的第一财季财报。
该季度Palo Alto Networks的收入为7.719亿美元,较去年同期增长18%;净亏损为5960万美元,合稀释后每股收益62美分,去年同期亏损3830万美元,合稀释每股收益41美分。除诸如股票补偿等费用的利润从去年同期的1.154亿美元降至1.048亿美元,或稀释后每股1.05美元。
Palo Alto Networks预计第二财季收入在8.38亿美元至8.48亿美元之间,总收入将在9.85亿美元至10亿美元之间。扣除收购Aporeto的净支出,预计调整后每股收益为1.11至1.13美元。
Palo Alto Networks预计整个2020财年的收入为34.4亿美元至34.8亿美元,现金收入为41.05亿美元至41.65亿美元,调整后每股收益为4.90美元至5美元。
尽管收益超出市场预期,但投资者对下个季度的指引感到失望,分析师此前预计第二财季每股收益为1.30美元,远高于Palo Alto估计的1.13美元至1.15美元,此外全年预测也低于分析师普遍预期的每股5.07美元。
截至美国东部时间晚间7:30,Palo Alto Networks股票在盘后交易中下跌了8.5%至229.10美元。
好文章,需要你的鼓励
西部数据闪存业务分拆后,SanDisk宣布将停用广受欢迎的WD Black和Blue品牌,推出全新的SanDisk Optimus系列NVMe产品线。WD Blue驱动器将更名为SanDisk Optimus,而高端WD Black驱动器将分别更名为Optimus GX和GX Pro。尽管品牌变更,底层硬件和供应链保持不变。然而受全球内存短缺影响,预计2026年第一季度客户端SSD价格可能上涨超过40%。
上海AI实验室开发RePro训练方法,通过将AI推理过程类比为优化问题,教会AI避免过度思考。该方法通过评估推理步骤的进步幅度和稳定性,显著提升了模型在数学、科学和编程任务上的表现,准确率提升5-6个百分点,同时大幅减少无效推理,为高效AI系统发展提供新思路。
福特汽车在2026年消费电子展上宣布将在车辆中引入AI助手技术。该AI助手最初将在福特和林肯智能手机应用中推出,从2027年开始成为新车型的原生功能。福特希望通过AI技术实现车辆个性化体验,提供基于位置、行为和车辆能力的智能服务。同时,福特将采用软件定义车辆架构,推出自研的高性能计算中心,提升信息娱乐、驾驶辅助等功能。
MIT团队开发的VLASH技术首次解决了机器人动作断续、反应迟缓的根本问题。通过"未来状态感知"让机器人边执行边思考,实现了最高2.03倍的速度提升和17.4倍的反应延迟改善,成功展示了机器人打乒乓球等高难度任务,为机器人在动态环境中的应用开辟了新可能性。