至顶网网络频道 综合消息:2019 年 6 月 17 日 ,全球领先的网络安全解决方案提供商 Check Point 软件技术有限公司(纳斯达克股票代码:CHKP)宣布推出 CloudGuard Log.ic 云原生威胁防护和安全智能解决方案。借助 CloudGuard Log.ic,客户可以在弹性云环境中查看每个数据流和审核跟踪记录,并了解云数据和活动,从而加快取证调查流程。
CloudGuard Log.ic 可有效检测云异常,阻止威胁和入侵,并支持客户通过情境丰富的可视化对 AWS 等公有云基础架构中的安全事故进行全面调查。Log.ic 是 Check Point CloudGuard 云安全产品家族的新成员。
Cyber Security Insiders 为 Check Point 开展的一项云安全调查发现,IT 组织面临的最大云运营安全问题是合规性 (34%) 和基础设施安全性缺乏可视性 (33%)。虽然大多数组织 (54%) 表示他们的云实例没有遭到黑客入侵,但令人惊讶的是,25% 的组织并不知道他们是否遭到过攻击。15% 的组织确定他们至少经历过一次云安全事故。
CloudGuard Log.ic 的核心是一个信息富化引擎,它可以整合来自各种来源的数据,包括 VPC 流日志和 AWS CloudTrail,从而在公有云环境中建立对安全性的情境感知。安全团队和 DevOps 团队现在可以使用这一交钥匙解决方案加快事故响应和威胁搜索速度,审查安全策略并跨多个帐户实施。CloudGuard Log.ic 还可以与 Splunk 和 ArcSight 等第三方 SIEM 解决方案相集成。
市场研究公司 451 Research 的 Fernando Montenegro 指出:“云环境的一项主要不同之处是具有短暂性。随着虚拟机、容器或无服务器功能工作负载和实例的执行,过去被视为静态的信息都不再值得信赖,比如 IP 地址。毫无疑问,我们发现了人们对新型安全工具的需求,他们希望这些工具‘生来’就可以理解新概念,并能够补充来自流日志、负载均衡器和其他云原生组件的信息。这样,IT 部门可以在系统运行时获得更详细的事件视图,从而更准确地了解环境并更严格地实施安全规则。”
CloudGuard Log.ic 的一些主要特性包括:
* 通过与 Check Point 行业领先的 ThreatCloud 恶意 IP 情报源集成,实现高级威胁防御。
* 轻松创建由可疑网络和用户活动、违规事件和安全性错误配置触发的自定义警报。
* 通过分析分配给用户、用户组和角色的属性来跟踪联合事件,因为配置变更具有跟踪记录,并与个人或角色相关联。
* 支持在电子邮件和各种 ITMS 工具(如 ServiceNow、PagerDuty、Jira 等)中为直接下属定义和安排重要事件、统计和流量报告。
* CloudBots 自动修复功能可用于自动处理特定的恶意活动警报,并自动执行隔离等后续步骤,或者进行标记以便进一步调查。
Check Point 软件技术公司产品管理和营销副总裁 Itai Greenberg 表示:“CloudGuard Log.ic 为我们的企业客户提供了涵盖云环境中所有活动的强大可视性和丰富情境,加之可帮助识别恶意威胁或检测入侵的数据源,它能够有效防止第五代大规模网络安全攻击。CloudGuard Log.ic 的诞生为 Check Point 客户带来了检测和预防云中高级威胁的最新安全保护利器。”
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。