至顶网网络频道 综合消息:2019 年 6 月 17 日 ,全球领先的网络安全解决方案提供商 Check Point 软件技术有限公司(纳斯达克股票代码:CHKP)宣布推出 CloudGuard Log.ic 云原生威胁防护和安全智能解决方案。借助 CloudGuard Log.ic,客户可以在弹性云环境中查看每个数据流和审核跟踪记录,并了解云数据和活动,从而加快取证调查流程。
CloudGuard Log.ic 可有效检测云异常,阻止威胁和入侵,并支持客户通过情境丰富的可视化对 AWS 等公有云基础架构中的安全事故进行全面调查。Log.ic 是 Check Point CloudGuard 云安全产品家族的新成员。
Cyber Security Insiders 为 Check Point 开展的一项云安全调查发现,IT 组织面临的最大云运营安全问题是合规性 (34%) 和基础设施安全性缺乏可视性 (33%)。虽然大多数组织 (54%) 表示他们的云实例没有遭到黑客入侵,但令人惊讶的是,25% 的组织并不知道他们是否遭到过攻击。15% 的组织确定他们至少经历过一次云安全事故。
CloudGuard Log.ic 的核心是一个信息富化引擎,它可以整合来自各种来源的数据,包括 VPC 流日志和 AWS CloudTrail,从而在公有云环境中建立对安全性的情境感知。安全团队和 DevOps 团队现在可以使用这一交钥匙解决方案加快事故响应和威胁搜索速度,审查安全策略并跨多个帐户实施。CloudGuard Log.ic 还可以与 Splunk 和 ArcSight 等第三方 SIEM 解决方案相集成。
市场研究公司 451 Research 的 Fernando Montenegro 指出:“云环境的一项主要不同之处是具有短暂性。随着虚拟机、容器或无服务器功能工作负载和实例的执行,过去被视为静态的信息都不再值得信赖,比如 IP 地址。毫无疑问,我们发现了人们对新型安全工具的需求,他们希望这些工具‘生来’就可以理解新概念,并能够补充来自流日志、负载均衡器和其他云原生组件的信息。这样,IT 部门可以在系统运行时获得更详细的事件视图,从而更准确地了解环境并更严格地实施安全规则。”
CloudGuard Log.ic 的一些主要特性包括:
* 通过与 Check Point 行业领先的 ThreatCloud 恶意 IP 情报源集成,实现高级威胁防御。
* 轻松创建由可疑网络和用户活动、违规事件和安全性错误配置触发的自定义警报。
* 通过分析分配给用户、用户组和角色的属性来跟踪联合事件,因为配置变更具有跟踪记录,并与个人或角色相关联。
* 支持在电子邮件和各种 ITMS 工具(如 ServiceNow、PagerDuty、Jira 等)中为直接下属定义和安排重要事件、统计和流量报告。
* CloudBots 自动修复功能可用于自动处理特定的恶意活动警报,并自动执行隔离等后续步骤,或者进行标记以便进一步调查。
Check Point 软件技术公司产品管理和营销副总裁 Itai Greenberg 表示:“CloudGuard Log.ic 为我们的企业客户提供了涵盖云环境中所有活动的强大可视性和丰富情境,加之可帮助识别恶意威胁或检测入侵的数据源,它能够有效防止第五代大规模网络安全攻击。CloudGuard Log.ic 的诞生为 Check Point 客户带来了检测和预防云中高级威胁的最新安全保护利器。”
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。