如今,大型企业的应用平台正在向微服务架构进行转型。在微服务架构下,应用程序和数据库等底层平台的关系将会被重构。巨杉数据库,作为新一代分布式数据库,为多家大型金融客户的云化架构升级提供了极为重要的助力。
作为新一代分布式数据库,SequoiaDB巨杉数据库,其架构与功能特性需要保证在与传统数据库全兼容的基础上,拥抱微服务与云计算框架。因此,分布式数据库对于分布式交易与ACID必须保证与传统技术完全兼容。同时,在面向微服务应用开发与云计算基础架构时,新一代分布式数据库必须支持弹性扩张、资源隔离、多租户、可配置一致性、多模式(支持各类SQL协议)、集群内可配置容灾策略等一系列功能。
传统单点数据库的容量瓶颈,仅仅是分布式数据库所解决的问题之一。更重要的是在未来微服务化应用开发以及云化平台的趋势下,应用不再以“烟囱式”的中间件加数据库模式进行构建,而是采用数千甚至上万的微服务程序构建成的复杂网状模型。因此,分布式数据库需要满足以下能力,才能够满足上层应用的弹性扩展、高并发、高吞吐量、与灵活敏捷的需求。
在这些技术需求驱动下,分布式数据库核心技术能力分为两个方面,一方面是对传统技术的兼容,包括:
另一方面,则是技术创新,包括:
作为一款金融级分布式关系型数据库,SequoiaDB巨杉数据库的分布式数据库架构和面向微服务的云化产品形态,已经帮助包括民生银行、恒丰银行在内的多家大型金融客户实现了大量业务系统的底层数据库云化转型升级。
目前,巨杉数据库在银行生产系统单机群最大物理节点数达到135个,单集群最大存储容量超过2.1 PB,单集群最大管理数据条数1318亿条。
SequoiaDB巨杉数据库作为一款金融级的分布式关系型数据库,在企业客户云化架构转型过程中,提供了多种重要技术能力。
数据存储资源池化
SequoiaDB数据存储引擎采用原生分布式架构,数据完全打散在分布式节点间存储,自动化数据分布和管理,数据可以按需灵活扩展。
SequoiaDB采用分片技术为系统提供了横向扩展机制,其分片过程对于应用程序来说完全透明。该机制解决了单台服务器硬件资源(如内存、CPU、磁盘 I/O)受限的问题,并不会增加应用程序开发的复杂性。巨杉数据库通过原生分布式架构,可以轻松实现PB级别数据管理,目前生产环境最大支持超过1500个节点集群。
SequoiaDB巨杉数据库存储引擎也实现了multi-model多模数据管理,支持非结构化、结构化和半结构化数据全覆盖并统一管理。SequoiaDB的多模引擎设计让数据库平台场景更多样,也能符合云数据架构下对于多样化业务数据的统一管理与运维要求。
同时,在一个大型集群中,SequoiaDB提供了多维度、多层级的逻辑与物理隔离能力。在一个典型的数据资源池类型基础数据服务平台(DBaas,DataBase As A Service)中,SequoiaDB巨杉数据库能够同时服务于成百上千个不同SLA服务级别、优先级、业务特性、与数据量的应用程序,并保证应用程序之间的数据逻辑与物理隔离。
SequoiaDB提供的“数据域(Domain)”特性,能够将整个集群在物理设备层面进行隔离,确保不同的表、表空间、与数据库实例坐落于独立的硬件设备上,保证高优先级的联机交易应用与后台统计分析相互隔离互不干扰。
数据库实例化
SequoiaDB巨杉数据库支持数据库服务实例化。
针对微服务应用架构,用户可以在同一个集群中创建成百上千个不同的关系型数据库实例。数据库实例的访问与使用方式和传统关系型数据库100%兼容,同时其底层所使用的数据从逻辑上完全独立,每个实例拥有自己独立的权限管理、数据管控、甚至可以选择部署在独立的硬件环境或共享设备中。
目前SequoiaDB巨杉数据库支持用户创建 MySQL、PostgreSQL 与 SparkSQL 实例,同时还提供了JSON、S3对象存储以及Posix文件系统实例,充分满足用户对于结构化、半结构化、以及非结构化数据的需求。
从应用程序开发者与DBA的角度看,SequoiaDB巨杉数据库所提供的关系型数据库实例,与传统MySQL、PostgreSQL和SparkSQL保持全兼容。例如,在SequoiaDB巨杉数据库中的MySQL实例中,其所有的增删改查语法、视图、触发器、事务、甚至访问计划都与传统MySQL保持一致。
作为分布式数据库,SequoiaDB巨杉数据库的SQL实例用户不需要关心底层的数据到底被分散在一台还是多台设备中。用户可以简单创建一个分区表,向其中写入上亿条记录,其数据将会被自动分散在不同的物理设备中,对于应用程序根本无需关注分库分表,数据库自动提供分布式事务以及分布式访问等能力。
双活容灾与数据安全
双活容灾即灾备系统中使主生产端数据库和备机端数据库同时在线运行,处于可读可写状态的技术。在银行的交易系统中,双活容灾能力不仅保证数据不丢失,也保证系统在遭遇事故时能够短时间内重新上线。在正常情况下,双活架构的两个数据中心都能够同时提供业务的读写服务,而当一个中心宕机后,所有前端应用可以立刻切换至依然存活的数据中心继续使用。
SequoiaDB巨杉数据库在内核层面实现了多种容灾方式,包括同城双活、同城双中心、同城三中心、两地三中心、与三地五中心等容灾策略。通过使用SequoiaDB巨杉数据库的容灾与高可用机制,数据中心内的服务器故障可以保证RTO与RPO均为零,而整个数据中心或同城网络故障也可以做到秒级RTO、RPO=0。
关于SequoiaDB巨杉数据库
巨杉数据库专注新一代分布式数据库技术研发,自2011年成立以来,坚持从零开始打造分布式开源数据库引擎,是中国首家连续两年入选 Gartner 数据库报告的数据库厂商。
巨杉数据库的主要产品包括 SequoiaDB 分布式关系型数据库与 SequoiaCM 企业内容管理软件,企业级应用场景包括分布式在线交易、数据中台、分布式内容管理等。
目前巨杉数据库已在超过50家500强级别的大型商业银行核心生产业务上线,企业用户总数超过1000家。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。