至顶网网络频道 02月28日 编译:VMware近期推出了其NSX网络虚拟化软件最重要的一次升级。这次升级实际上是将网络与虚拟机管理程序(运行虚拟机或在软件中模拟的虚机)进行了分离。
据悉,VMware的NSX-T Data Center 2.4和NSX Cloud目前运行在AWS、微软和IBM的基础设施即服务平台上,以及VMware自身的混合云和本地产品上。
通过这次发布,VMware将完全转向混合云和多云环境。据Gartner称,到明年混合云及多云环境将在3/4的大型企业中普及。这是VMware推动所谓“虚拟云网络”战略的一部分,在该战略下,NSX本身属于“从数据中心到云端再到边缘基础设施一个无处不在的软件层”的重要组成部分,这也是VMware与思科展开竞争的关键,而思科也有类似端到端的愿景。
此外,VMware公布了抢眼的客户采用数据。VMware表示,目前已经有10000个客户站点部署了NSX,其中包括82家财富100强企业和70%的全球财富500强企业。
除了运行在主流云之上,NSX网络虚拟化平台现在还嵌入到了整个VMware产品组合中,包括VMware Cloud Foundation、VMware Cloud on AWS、VMware Enterprise Pivotal Container Service和VMware vCloud Network Function Virtualization,其也将成为Amazon最近公布的云堆栈本地版AWS Outposts中的一部分。
以应用为中心
对于拥有大型网络(越来越多地涵盖了多个云)的企业组织而言,网络虚拟化被视为一种从基于设备管理为中心,转向以应用需求为中心的视角。
NSX高级产品营销经理Jonathan Morin表示:“我们过去常常谈论‘NSX无处不在’,这次发布扩展了这一概念,但将重点从无处不在转向了每个人。我们正在将应用作为业务的中心。”
VMware网络和安全高级副总裁Tom Gillis表示,“我们的目标是让配置和管理网络的任务与在公有云中的内部部署一样简单。在公有云中,开发人员单击按钮就可以启动工作负载,这种敏捷性是由软件驱动的。我们正在为数据中心带来同样的自动化水平。”
这次发布的新版本最重要的功能之一是简化了安装,VMware表示,软件定义网络的配置时间可以从几天缩短到几分钟。使用Ansible开源配置管理工具包构建的模块,可以实现安装工作流程的自动化。此外还增加了一个基于HTML5的新用户界面,以提供说明性指导,减少完成配置任务所需的点击次数和页面跳转次数。
VMware表示,将基础设施管理转移到代码中,可以消除配置开销并让开发人员使用策略定义来处理自己的部署,从而让企业能够更快速地开发应用。Gillis表示:“安装非常简单,你以前要安装许多组件,现在只有一个。”
软件定义网络还可以让企业组织在应用层面指定策略,而不必担心配置单个设备,从而增强安全性。在异构环境中可能就有5000个防火墙规则,手动编写所有规则几乎是不可能的。NSX对这些组件的内容有着内在的理解,可以在内部部署和云端模式下应用相关的策略。
另外,网络虚拟化也改善了资源利用率,其方式与服务器虚拟化将多个处理器视为一个处理器的方式相同。Gillis说到,“客户通过虚拟化可以将设备利用率提高30%到35%。”
新推出的NSX尚未包含用于管理软件定义WAN的原生功能,但去年VMware收购了VeloCloud Networks之后,将这些功能整合到了内部。这两个产品系列将同时独立存在,但Gillis表示,“我们要将SD-WAN与数据中心产品融合在策略层中。”
好文章,需要你的鼓励
检索增强生成(RAG)正成为AI领域的关键技术,通过结合外部信息检索与大语言模型的生成能力,解决传统模型仅依赖训练数据的局限性。RAG允许模型实时访问外部数据库或文档,提供更准确、更新的信息。该技术可应用于企业文档查询、个人化AI助手等场景,通过向模型提供特定领域知识来获得精准结果。微软专家指出,RAG有助于结合知识与推理、提高模型使用效率,并支持多模态应用。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
AI数据平台iMerit认为企业级AI工具集成的下一步不是更多数据,而是更好的数据。该公司正式推出学者计划,旨在建立专家团队来微调生成式AI模型。与Scale AI的高吞吐量方法不同,iMerit专注于专家主导的高质量数据标注,需要深度人工判断和领域专业监督。公司目前与超过4000名学者合作,客户包括三家大型生成式AI公司、八家顶级自动驾驶公司等。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。