全球有数十亿人在使用Facebook服务,因此Facebook一直被迫开发自己的网络基础设施以应对庞大的负载,因为在别处找不出能够满足这样需求的系统和技术。不仅如此,Facebook在分享技术开发、开源技术组件方面也由来已久,这让其他公司也可以使用和改进这些技术以便更多人受益。
今天,Facebook宣布开源其最新打造的“转发平面软件库”,这个组件为Facebook基础设施中使用的网络负载均衡器提供动力。负载均衡器用于将网络和应用流量分布到多个服务器上,以提高容量和可靠性。
Facebook最新的工具名为Katran,这是一款基于软件的负载均衡工具,据称它能使后端网络基础架构更加可靠和可扩展。Facebook以前依靠基于硬件的系统在其网络上执行负载均衡,但这个系统比较老旧不够灵活,无法处理日益增长的负载和最新服务。
据说Katran利用内核工程方面的两项最新创新技术,即eXpress Data Path和eBPF虚拟机,使其后端服务器更加灵活,同时也让网络平衡更加高效。
Facebook工程师Nikita Shirokov和Ranjeeth Dasineni在博客中写道:“我们相信Katran为那些打算利用XDP和eBPF这一激动人心的组合来构建高效的负载平衡器的用户和企业组织提供了一个出色的转发平台。”
除了Katran之外,Facebook还公布了Zero Touch Provisioning新工具的详细信息,工程师利用这个网络配置系统来自动构建骨干网所需的非物理工作。该工具是为了针对网络工程师对网络基础设施进行手动检查和测试的有限可用性而开发的。Zero Touch可以实现大部分工作的自动化,让工程师可以将更多时间花在那些无法实现自动化的任务上。
“我们以前的网络配置系统被证明无法应对构建这些网络的规模和复杂性,因此我们自己打造了全面的、灵活的工作流程系统,配备了Zero Touch Provisioning,”Facebook的工程团队在另一篇博客文章中这样写道。“这个新框架让Facebook工程师能够加快步伐,更有创意地解决问题,并采取更加迭代的方式来构建他们的网络和网络部署工具。”
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。