至顶网网络频道 03月21日 国际消息: 近日Facebook对外公布了一个名为Fabric Aggregator的分布式网络系统,该系统用于扩展其区域内数据中心结构之间的网络容量。
Fabric Aggregator设计使用了简单和开放的构建模块——例如Wedge 100,Facebook的架顶式网络交换机,以及FBOSS(基于Linux的操作系统),这种设计提供了快速调整容量所需的灵活性。
Facebook在一篇博客文章中解释说,因为要修建第12个数据中心,并且要把原来位于Papillion、Nebraska的两座建筑扩展至六座,所以需要具有一定的灵活性。Facebook的数据中心覆盖范围正在不断扩大,以适应更多沉浸式内容,例如实时视频、360度照片和虚拟现实。
为了提供更高的灵活性和操作简单性,Facebook为Fabric Aggregator开发了一个布线组装单元,该单元模拟底板在经典机箱设备中提供的功能。换句话说,这个单元提供了Fabric Aggregator构建块之间的互连。
Facebook在博客文章解释说:“通过这种方法,我们可以扩展容量,互换构建块,并随着我们的需求变化快速更换电缆组件。”
Facebook设计了四种不同的布线配置,并通过Open Compute Project开放了这种设计。
同时,Fabric Aggregator节点(复制带宽单位以满足聚合层的总体需求)实现了两层交叉连接体系结构。下层负责切换区域传输流量(东/西),而上层负责切换往返这些区域的传输流量(北/南)。
Facebook在博客文章中称:“我们将该解决方案分成两个不同的层,这使得我们在流量需求发生变化时,能够添加更多的子交换机,从而单独扩展东/西和南/北的容量。”
Facebook解释说,这种构建块的方法可以在子交换机或节点级运行,提供了灵活性和安全性。“Fabric Aggregator层可能会同时发生很多故障,而不会影响网络的整体性能。”
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。