本文讨论了构建大型语言模型(LLM)的关键要素:向量、令牌和嵌入。向量是机器理解语言的基础,通过将文本数据转换为高维向量空间中的表示。令牌是文本数据在模型内部的表示形式,可以是单词、子词或字符。嵌入则是融入了语义语境的令牌表征,代表文本的意义和上下文信息。这些组件共同构筑了LLM的技术支柱,赋予模型卓越的语言理解和生成能力。